Citation Information

  • Title : Soil carbon and nitrogen stores and storage potential as affected by land-use in an agro-pastoral ecotone of northern China
  • Source : Biogeochemistry
  • Publisher : Springer
  • Volume : 82
  • Issue : 2
  • Pages : 127-138
  • Year : 2007
  • DOI : 10.1007/s10533-0
  • ISBN : 10.1007/s10533-006-9058-y
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Han, X.
    • Liu, P.
    • Li, L.
    • Huang, J.
    • Sun, O.
    • Zhou, Z.
  • Climates: Continental (D). Desert (BWh, BWk). Steppe (BSh, BSk). Warm summer continental/Hemiboreal (Dsb, Dfb, Dwb).
  • Cropping Systems: Maize. Grazing systems.
  • Countries: China.

Summary

Equilibrium carbon stock is the result of a balance between inputs and outflows to the pool. Changes in land-use are likely to alter such balance, resulting in different carbon stores under different land-use types in addition to the impacts of global climate change. In an agro-pastoral ecotone of Inner Mongolia, northern China, we investigated productivity and belowground carbon and nitrogen stores under six different types of land-uses, namely free grazing (FG), grazing exclusion (GE), mowing (MW), corn plantation (CP), fallow (FL), and alfalfa pasture (AP), and their impacts on litter and fine roots in semiarid grassland ecosystems. We found that there were great variations in aboveground net primary production (ANPP) across the six land-use types, with CP having markedly high ANPP; the FG had significantly reduced soil organic carbon (SOC) and nitrogen stores (SON) to 100 cm depth compared with all other types of land uses, while very little litter accumulation was found on sites of the FG and CP. The top 20 cm of soils accounted for about 80% of the root carbon and nitrogen, with very little roots being found below 50 cm. About 60% of SOC and SON were stored in the top 30 cm layer. Land-use change altered the inputs of organic matters, thus affecting SOC and SON stores accordingly; the MW and GE sites had 59 and 56% more SOC and 61% more SON than the FG. Our estimation suggested that restoring severely degraded and overgrazed grasslands could potentially increase SOC and SON stores by more than 55%; conversion from the native grasses to alfalfa could potentially double the aboveground biomass production, and further increase SOC and SON stores by more than 20%. Our study demonstrated significant carbon and nitrogen storage potential of the agro-pastoral ecotone of northern China through land-use changes and improved management in the context of mitigating global climate change.

Full Text Link