Citation Information

  • Title : Effect of crop rotation, fertilizer and tillage management on spring wheat grain yield and N and P content in a thin Black Chernozem: a long-term study.
  • Source : Canadian Journal of Plant Science
  • Publisher : Canadian Society of Agronomy/Canadian Society of Horticultural Science/Canadian Weed Science Society/Agricultural Institute of Canada
  • Volume : 91
  • Issue : 3
  • Pages : 467-483
  • Year : 2011
  • DOI : 10.4141/cjps1003
  • ISBN : 10.4141/cjps1003
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • VandenBygaart, A. J.
    • Zentner, R. P.
    • Lemke, R.
    • May, W. E.
    • Holzapfel, C. B.
    • Campbell, C. A.
    • Lafond, G. P.
  • Climates: Continental (D). Warm summer continental/Hemiboreal (Dsb, Dfb, Dwb).
  • Cropping Systems: Legumes. No-till cropping systems. Till cropping systems. Wheat.
  • Countries: Canada.

Summary

We analyzed the agronomic data from a 50-yr crop rotation experiment being conducted on a fine-textured, thin Black Chernozem at Indian Head, Saskatchewan in Canada. Our objective was to determine how a change from conventional-till to no-till, together with an increase in N fertilizer rates recommended by the Saskatchewan Soil Testing Laboratory has affected wheat yields and N and P balance in the systems over the past 20 yr. The treatments assessed were fertilized (N-P) and unfertilized fallow-wheat ( Triticum aestivum L.) (F-W), F-W-W, and continuous wheat (ContW), and unfertilized legume green manure (LGM)-W-W and F-W-W-brome ( Bromus inermis Leyss.)/alfalfa ( Medicago sativa L.) hay (H)-H-H. On average, N applied to wheat grown on fallow was 6 kg ha -1 yr -1 from 1957 to 1989 and 57 kg ha -1 yr -1 from 1990 to 2007; for wheat grown on stubble, the N rates were 21 kg ha -1 yr -1 from 1957 to 1977 and 85 kg ha -1 yr -1 thereafter. Crops received P at 10 kg ha -1 yr -1. On average, fertilizer increased wheat yield of fallow-wheat by 31%; the hay system increased fallow-wheat yield by 26% compared with unfertilized fallow-wheat in F-W-W, and the LGM system increased it by 14%. Effects were greater on stubble crop than on fallow crop, with fertilizer increasing the yield of wheat grown on stubble in the monoculture system by 114%, the hay system increasing it by 83% and the LGM system increasing it by 37%. The legume-containing rotations increased yields by increasing the N supplying capacity of the soil with the hay system being more effective than the LGM because legumes occurred more frequently in the hay rotation (3 in 6 yr vs. 2 in 6 yr). The benefit of the legume-containing systems on wheat yield may have been restricted because this unfertilized system steadily depleted available soil P. Average annualized wheat production in F-W, F-W-W and ContW rotations was unaffected by cropping frequency for the unfertilized systems, but it was directly proportional to cropping frequency for the fertilized systems. Annualized wheat production for the LGM-W-W rotation was 18% greater than for unfertilized F-W-W, but 41% less than for the fertilized F-W-W. Annualized wheat production in the hay-containing rotation was 32% less than in the unfertilized F-W-W rotation because of the less frequent presence of wheat in the hay system. Greater rates of N fertilizer in the later years increased yields and grain N content; this resulted in less residual NO 3-N in the soil compared with previous years with lower fertilizer N. Thus, we expect there will be less likelihood of NO 3 leaching under fallow-containing systems under no-till when updated fertilizer recommendations are used compared with previous results under conventional tillage with lower rates of N applications.

Full Text Link