Soil salinity management is a factor for successful production of pecan ( Carya illinoinensis) in arid southwestern United States. An exploratory study was performed to evaluate the effect of various soil management practices on salt leaching in basin-irrigated orchards developed on alluvial soils (Torrifluvents, Entisols) of the middle Rio Grande Basin. The practices evaluated were ripping, minimum-till chiseling, and soil profile modification. For ripping, parabolic shanks were passed through the center section (4 to 8 ft wide) between each tree row to a depth ranging from 18 to 36 inches. Minimum-till chisels included 7- and 30-inch shanks, equipped with coulters to reduce break up of the ground surface. Soil profile modification consisted of trenching with a backhoe and profile mixing with a large excavator. The effectiveness of these methods was evaluated by measuring soil salinity and moisture in treated and untreated zones at 17 test sites. Both ripping and minimum-till deep chiseling helped improve salt leaching, and the effectiveness of salt leaching increased as working depths approach the thickness of the clayey layer. However, annual ripping of the center section of each tree row space may not provide wide enough zones to alleviate salt stress to the trees. Straight shanks prune but do not lift tree roots, thus appearing to be better suited for chiseling closer to tree rows. Soil profile modification was highly effective in leaching salts. From the view of minimizing soil aggregate destruction and of maintaining a leveled floor, minimum-till deep chiseling, followed by the use of sand-topdressing and minimum-till shallow chisels for maintenance may prove to be more desirable than conventional ripping, especially in soil types consisting of silty clay loam.