Novel management practices are needed to increase dryland soil organic matter and crop yields that have been declining due to long-term conventional tillage with spring wheat ( Triticum aestivum L.)-fallow system in the northern Great Plains, USA. The effects of tillage, crop rotation, and cultural practice were evaluated on dryland crop biomass (stems+leaves) yield, surface residue, and soil organic C (SOC) and total N (STN) at the 0-20 cm depth in a Williams loam (fine-loamy, mixed, superactive, frigid, Typic Argiustolls) from 2004 to 2007 in eastern Montana, USA. Treatments were two tillage practices [no-tillage (NT) and conventional tillage (CT)], four crop rotations [continuous spring wheat (CW), spring wheat-pea ( Pisum sativum L.) (W-P), spring wheat-barley ( Hordeum vulgaris L.) hay-pea (W-B-P), and spring wheat-barley hay-corn ( Zea mays L.)-pea (W-B-C-P)], and two cultural practices [regular (conventional seed rates and plant spacing, conventional planting date, broadcast N fertilization, and reduced stubble height) and ecological (variable seed rates and plant spacing, delayed planting, banded N fertilization, and increased stubble height)]. Crop biomass and N content were 4 to 44% greater in W-B-C-P than in CW in 2004 and 2005 and greater in ecological than in regular cultural practice in CT. Soil surface residue amount and C and N contents were greater in NT than in CT, greater in CW, W-P, and W-B-C-P than in W-B-P, and greater in 2006 and 2007 than in 2004 and 2005. The SOC and STN concentrations at 0-5 cm were 4 to 6% greater in CW than in W-P or W-B-P in NT and CT from 2005 and 2007. In 2007, SOC content at 10-20 cm was greater in W-P and W-B-P than in W-B-C-P in CT but STN was greater in W-B-P and W-B-C-P than in CW in NT. From 2004 to 2007, SOC and STN concentrations varied at 0-5 cm but increased at 5-20 cm. Diversified crop rotation and delayed planting with higher seed rates and banded N fertilization increased the amount of crop biomass returned to the soil and surface residue C and N. Although no-tillage increased surface residue C and N, continuous nonlegume cropping increased soil C and N levels at the surface layer compared with other crop rotations. Continued return of crop residue from 2004 to 2007 may increase soil C and N levels but long-term studies are needed to better evaluate the effect of management practices on soil C and N levels under dryland cropping systems in the northern Great Plains.