Soil and crop management practices may alter the quantity, quality, and placement of plant residues that influence soil C and N fractions. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)] and five crop rotations [continuous spring wheat (Triticum aestivum L.) (CW), spring wheat-fallow (W-F), spring wheat-lentil (L-ens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)] on transient land previously under 10 years of Conservation Reserve Program (CRP) planting on the amount of plant biomass (stems + leaves) returned to the soil from 1998 to 2003 and soil C and N fractions within the surface 20 cm in March 2004. A continued CRP planting was also included as another treatment for comparing soil C and N fractions. The C and N fractions included soil organic C (SOC), soil total N (STN), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), and NH4-N and NO3-N contents. A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) in Havre, MT, USA. Plant biomass yield varied by crop rotation and year and mean annualized biomass was 45-50% higher in CW and W-F than in W-L. The SOC and PCM were not influenced by treatments. The MBC at 0-5 cm was 26% higher in W-W-F than in W-F. The STN and NO3-N at 5-20 cm and PNM at 0-5 cm were 17-1206% higher in CT with W-L than in other treatments. Similarly, MBN at 0-5 cm was higher in CT with W-L than in other treatments, except in CT with W-F and W-P-F. Reduction in the length of fallow period increased MBC and MBN but the presence of legumes, such as lentil and pea, in the crop rotation increased soil N fractions. Six years of tillage and crop rotation had minor influence on soil C and N storage between croplands and CRP planting but large differences in active soil C and N fractions.