To improve C sequestration in no-till soils requires further development of crop rotations with high phytomass-C additions. The objectives of this study were (i) to assess long-term (17 years) contributions of cover crop- or forage-based no-till rotations and their related shoot and root additions to the accumulation of C in bulk and in physical fractions of a subtropical Ferralsol (20-cm depth); and (ii) infer if these rotations promote C sequestration and reach an eventual C saturation level in the soil. A wheat ( Triticum aestivum L., winter crop)-soybean ( Glycine max (L.) Merr, summer crop) succession was the baseline system. The soil under alfalfa ( Medicago sativa L., hay forage) intercropped every three years with maize ( Zea mays L., summer crop) had the highest C accumulation (0.44 Mg C ha -1 year -1). The bi-annual rotation of ryegrass ( Lolium multiflorum Lam., hay winter forage)-maize-ryegrass-soybean had a soil C sequestration of 0.32 Mg C ha -1 year -1. Among the two bi-annual cover crop-based rotations, the vetch ( Vicia villosa Roth, winter cover crop)-maize-wheat-soybean rotation added 7.58 Mg C ha -1 year -1 as shoot plus root and sequestered 0.28 Mg C ha -1 year -1. The counterpart grass-based rotation of oat ( Avena strigosa Schreb., winter cover crop)-maize-wheat-soybean sequestered only 0.16 Mg C ha -1 year -1, although adding 13% more C (8.56 Mg ha -1 year -1). The vetch legume-based rotation, with a relative conversion factor (RCF) of 0.147, was more efficient in converting biomass C into sequestered soil C than oat grass-based rotation (RCF=0.057). Soil C stocks showed a close relationship ( R2=0.72-0.98, P<0.10) with root C addition, a poor relationship with total C addition and no relationship with shoot C addition. This suggests a more effective role of root than shoot additions in C accumulation in this no-till soil. Most of the C accumulation took place in the mineral-associated organic matter (71-95%, in the 0-5 cm layer) compared to the particulate organic matter. The asymptotic relationship between root C addition and C stocks in bulk soil and in mineral-associated fraction supports the idea of C saturation. In conclusion, forages or legume cover crops contribute to C sequestration in no-till tropical Ferrasols, and most of this contribution is from roots and stored in the mineral-associated fraction. This combination of soil and rotations can reach an eventual soil C saturation.