No-tillage (NT) farming offers innumerable benefits to soil and water conservation, however, its potential to sequester soil organic carbon (SOC) and related soil properties varies widely. Thus, the impact of long-term (>4 yr) NT-based cropping systems on SOC sequestration and selected soil physical and chemical parameters were assessed across soils within five Major land Resource Areas (MLRAs: 99 and 111 in Michigan; 124 and 139 in Ohio; and 127 in Pennsylvania) in eastern U.S.A. Soil samples were collected from paired fields of NT and plow tillage (PT) based cropping systems and an adjacent woodlot (WL). The SOC concentration, bulk density (rho(b)), texture, pH, electrical conductivity (EC), soil N, coarse particulate organic matter (CPOM) C and N, and nitrate N (NO3-N) concentrations were determined. Conversion from NT to PT practice increased surface soil pH from 5.97,6.56 and 6.02 to 6.62, 6.91 and 7.09 under MLRAs 127, 111 and 99, respectively. NT soils had higher SOC concentration soils by 30,50 and 67% over PT soils at 0-5 cm depth under MLRAs 99, 111 and 127, respectively. Considering the whole soil profile SOC, WL had higher SOC pool than NT and PT practices under MLRAs 99, 111 and 124, however, there was no significant difference (P < 0.05) between NT and PT practices across five soils. Almost the same trend was observed in the case of depthwise soil N content. NT soil had higher N content than PT soils by 27,44 and 54% under MLRAs 99,127 and 111, respectively. However, whole soil profile N content of NT soil was significantly higher by 12% than PT soil under MLRA 99. Concentrations of CPOM associated C and N of NT soil was higher than PT soil under MLRAs 99. 111 and 127 at 0-5 soil depth. These results indicated that impact of tillage on soil C and associated soil quality parameters is confined within specific soil types. (C) 2009 Elsevier B.V. All rights reserved.