Citation Information

  • Title : Mineralizable soil nitrogen and labile soil organic matter in diverse long-term cropping systems.
  • Source : Nutrient Cycling in Agroecosystems
  • Publisher : Springer Netherlands
  • Volume : 90
  • Issue : 2
  • Pages : 253-266
  • Year : 2011
  • DOI : 10.1007/s10705-0
  • ISBN : 10.1007/s10705-011-9426-4
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Maul, J. E.
    • Meisinger, J. J.
    • Cavigelli, M. A.
    • Spargo, J. T.
    • Mirsky, S. B.
  • Climates: Temperate (C). Humid subtropical (Cwa, Cfa).
  • Cropping Systems: Conventional cropping systems. Maize. No-till cropping systems. Organic farming systems. Soybean. Till cropping systems. Wheat.
  • Countries: USA.

Summary

Sustainable soil fertility management depends on long-term integrated strategies that build and maintain soil organic matter and mineralizable soil N levels. These strategies increase the portion of crop N needs met by soil N and reduce dependence on external N inputs required for crop production. To better understand the impact of management on soil N dynamics, we conducted field and laboratory research on five diverse management systems at a long-term study in Maryland, the USDA- Agricultural Research Service Beltsville Farming Systems Project (FSP). The FSP is comprised of a conventional no-till corn ( Zea mays L.)-soybean ( Glycine max L.)-wheat ( Triticum aestivum L.)/double-crop soybean rotation (NT), a conventional chisel-till corn-soybean-wheat/soybean rotation (CT), a 2 year organic corn-soybean rotation (Org2), a 3 year organic corn-soybean-wheat rotation (Org3), and a 6 year organic corn-soybean-wheat-alfalfa ( Medicago sativa L.) (3 years) rotation (Org6). We found that total potentially mineralizable N in organic systems (average 315 kg N ha -1) was significantly greater than the conventional systems (average 235 kg N ha -1). Particulate organic matter (POM)-C and -N also tended to be greater in organic than conventional cropping systems. Average corn yield and N uptake from unamended (minus N) field microplots were 40 and 48%, respectively, greater in organic than conventional grain cropping systems. Among the three organic systems, all measures of N availability tended to increase with increasing frequency of manure application and crop rotation length (Org2 < Org3 ? Org6) while most measures were similar between NT and CT. Our results demonstrate that organic soil fertility management increases soil N availability by increasing labile soil organic matter. Relatively high levels of mineralizable soil N must be considered when developing soil fertility management plans for organic systems.

Full Text Link