Citation Information

  • Title : Improvement of an oxisol structure by no-till cropping systems in the region of Campos Gerais, Parana.; Melhoria da estrutura de um latossolo por sistemas de culturas em plantio direto nos Campos Gerais do Parana.
  • Source : REVISTA BRASILEIRA DE CIENCIA DO SOLO
  • Publisher : SOC BRASILEIRA DE CIENCIA DO SOLO
  • Volume : 36
  • Issue : 3
  • Pages : 983-992
  • Year : 2012
  • DOI : 10.1590/S0100-06
  • ISBN : 10.1590/S0100-06
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Pauletti, V.
    • Favaretto, N.
    • Molin, R.
    • Mellek, J. E.
    • Dieckow, J.
    • Da-Silva, V. L.
    • Vezzani, F. M.
  • Climates: Humid subtropical (Cwa, Cfa).
  • Cropping Systems: Maize. Cover cropping. Crop-pasture rotations. No-till cropping systems. Oats. Rye. Soybean. Wheat.
  • Countries: Brazil.

Summary

The quality of no-tillage systems depends on an adequate soil management that promotes soil structure improvements. This is associated to the cropping system adopted. This study investigated the effect of long-term no-tillage systems (18 years) on the structural quality of a sandy-clay to clay Oxisol (Latossolo Vermelho) in the region of Campos Gerais, Parana, Brazil. Five cropping systems were assessed: wheat-soybean [Wt-So], black oat-maize-wheat-soybean [Ot-Mz-Wt-So], vetch-maize-wheat-soybean [Vt-Mz-Wt-So], ryegrass-maize-ryegrass-soybean [Rg-Mz-Rg-So]; and alfalfa-maize [Alf-Mz]. Soil was sampled from the layers 0-5, 5-10 and 10-20 cm, in cylinders and in blocks with undisturbed structure. In the 0-5 cm layer, bulk density was lowest in the Ot-Mz-Wt-So (0.96 Mg m -3) and Vt-Mz-Wt-So systems (0.93 Mg m -3). In the 5-10 and 10-20 cm layers, the bulk density tended to be lowest in Alf-Mz systems (1.14 and 1.17 Mg m -3, respectively). A similar trend was observed for macroporosity, which in the top layer was greater in Ot-Mz-Wt-So (0.29 m 3 m -3) and Vt-Mz-Wt-So (0.30 m 3 m -3) and in the 5-10 and 10-20 cm layers tended to be greater in the Alf-Mz system (0.19 m 3 m -3). No clear trend was observed for microporosity. The saturated hydraulic conductivity was directly related with macroporosity, and was highest for Vt-Mz-Wt-So in the 0-5 cm layer (224 mm h -1) and Alf-Mz in the layers 5-10 (170 mm h -1) and 10-20 cm (147 mm h -1). In the Vt-Mz-Wt-So system, the mean weight diameter of aggregates was lowest in the 0-5 cm layer (2.39 mm) and highest (3.04 mm) in the Wt-So. The highest cone index values were observed in the Wt-So system, with over 1.5 MPa in the 7.5-22.5 cm layer. The compaction degree was lowest in the Alf-Mz system (0.2 MPa cm). Results were attributed mainly to the role of the crop roots of the systems and to the intensity of machinery traffic. Considering the 0-20 cm layer as a whole, the capacity to promote soil structural quality improvements was greater for the semi-perennial Alf-Mz system than for systems based on annual species. Bi-annual rotation systems, based on cover crops such as black oat and vetch, promote soil structural quality improvements compared to the wheat - soybean succession.

Full Text Link