Field experiments were conducted in western France for two consecutive years to investigate the effect of pea-cereal intercropping on ascochyta blight, a major constraint of field pea production world-wide. Disease pressure was variable in the experiments. Intercropping had almost no effect on disease development on stipules regardless of disease pressure. In contrast, disease severity on pods and stems was substantially reduced in the pea-cereal intercrop compared to the pea monocrop when the epidemic was moderate to severe. Therefore, a pea-cereal intercrop could potentially limit direct yield loss and reduce the quantity of primary inoculum available for subsequent pea crops. Disease reduction was partially explained by a modification of the microclimate within the intercrop canopy, in particular, a reduction in leaf wetness duration during and after flowering. The effect of intercropping on splash dispersal of conidia was investigated under controlled conditions using a rainfall simulator. Total dispersal was reduced by 39 to 78% in pea-wheat canopies compared to pea canopies. These reductions were explained by a reduction in host plant density and a barrier or relay effect of the non-host plants.