Citation Information

  • Title : Long-term C-CO 2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems.
  • Source : Revista Brasileira de Ciencia do Solo
  • Publisher : Sociedade Brasileira de Ciencia do Solo
  • Volume : 35
  • Issue : 3
  • Pages : 819-832
  • Year : 2011
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Fiorin, J.
    • Nicoloso, R.
    • Tornquist, C.
    • Amado, T.
    • Campos, B.
  • Climates: Humid subtropical (Cwa, Cfa).
  • Cropping Systems: Maize. Crop-pasture rotations. No-till cropping systems. Oats. Soybean. Till cropping systems. Wheat.
  • Countries: Brazil.

Summary

Soil C-CO 2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO 2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO 2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Koppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2degreesC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0 - monoculture system (soybean/wheat), (b) R1 - winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2 - intensive crop rotation (soybean/black oat/soybean/black oat+common vetch/maize/oilseed radish/wheat). The soil C-CO 2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO 2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO 2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO 2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO 2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO 2 evolution. Soil C-CO 2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO 2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.

Full Text Link