Citation Information

  • Title : Tillage and nitrogen effects on soil organic matter fractions in wheat-based systems.
  • Source : Soil Science Society of America Journal
  • Publisher : Soil Science Society of America
  • Volume : 70
  • Issue : 6
  • Pages : 1896-1905
  • Year : 2006
  • DOI : 10.2136/sssaj200
  • ISBN : 10.2136/sssaj200
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Hons, F.
    • Dou, F.
  • Climates: Humid subtropical (Cwa, Cfa).
  • Cropping Systems: Crop-pasture rotations. No-till cropping systems. Sorghum. Soybean. Wheat.
  • Countries: USA.

Summary

Management practices that alter plant residue production and distribution influence SOC (soil organic carbon) dynamics. The objectives of this study were to investigate the impacts of tillage, cropping system, and N fertilizer application on SOC and soil N pools through physical fractionation of a central Texas soil after 20 years. Nitrogen fertilizer application and no-tillage (NT) significantly increased wheat ( Triticum aestivum) straw yield. Compared with conventional tillage (CT), SOC under NT in surface (0-5 cm) samples was 38, 69, and 68% greater for continuous wheat (CW), wheat-soyabean ( Glycine max)-sorghum ( Sorghum bicolor) rotation (SWS), and double-cropped wheat-soyabean (WS), respectively. The greatest SOC was observed in WS under NT with N fertilizer application, and the lowest occurred in CW under CT without N. Increased cropping intensity increased SOC compared with monoculture. Nitrogen fertilizer application only significantly increased SOC sequestration under NT. No-tillage increased SOC concentration in all physical size fractions compared with CT. Increased cropping intensity and N fertilizer application significantly increased SOC sequestration in most size fractions only under NT. Intraparticulate organic matter C (IPOM-C) was proportionally more affected by tillage than total SOC, indicating that this fraction was more sensitive to management. Carbon concentrations in all size fractions were significantly correlated with each other as well as SOC. Our results indicated that NT associated with enhanced cropping intensity and N fertilizer application sequestered greater SOC and soil total N.

Full Text Link