Citation Information

  • Title : No-till corn response to crop rotation and in-row residue placement.
  • Source : Agronomy Journal
  • Publisher : American Society of Agronomy
  • Volume : 89
  • Issue : 4
  • Pages : 588-596
  • Year : 1997
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Voroney, R.
    • Vyn, T.
    • Janovicek, K.
  • Climates:
  • Cropping Systems: Barley. Canola. Maize. Cover cropping. Crop-pasture rotations. No-till cropping systems. Soybean. Wheat.
  • Countries: USA.

Summary

Research in Ontario, Canada in 1989, 1990, and 1995 evaluated no-till maize yield response to various preceding crops and examined whether in-row residue removal affected no-till maize response to rotation crops. The soil was an imperfectly drained loam (medium, mixed, weakly to moderately calcareous Typic Hapludalf). The preceding crops were: maize harvested for grain or whole-plant silage; hard red spring wheat; barley; red clover ( Trifolium pratense) cover crops, following barley, that were killed by spraying either 3 weeks (early-kill) or 1 day (late-kill) prior to sowing maize; canola [rape]; and soyabeans. In-row residue was either retained while sowing or cleared using planter-mounted, notched-disc row cleaners. Clearing in-row cover crop residue increased early-season maize growth and was associated with yield increases of 0.61 t ha -1 (8%) following early-killed red clover and 0.43 t ha -1 (6%) ( P = 0.10) following late-killed red clover. In 2 of 3 years, maize yields following early-killed red clover were similar to following soyabeans and greater than following grain maize, provided that in-row residue was cleared. Following the other crops, grain yield response to clearing in-row residue was smaller and less consistent over years. Preceding cropping affected early-season maize growth, with the largest plants at 5 weeks after sowing following either soyabeans or silage maize and the smallest following either red clover or grain maize. In 2 of 3 years, when preceding crop effects on grain yield were statistically significant, yields following either soyabeans or spring wheat were more than 1.05 t ha -1 (16%) higher than after grain maize. That yield increase occurred regardless of in-row residue placement. Removing maize stover by harvesting as silage increased maize yield by 0.86 t ha -1 (12%) over yield following grain maize. During 1995, maize yield following silage maize was less than after soyabeans, canola, barley, or wheat; thus, no-till maize yield response to rotation is not exclusively due to the presence of surface-placed stover. In-row residue placement and preceding cropping practices affected in-row soil temperature, but this could not totally account for the treatment effects on early-season maize growth and yields.

Full Text Link