The potential for wind erosion in South Central Colorado is greatest in the spring, especially after harvesting of crops such as potato (Solanum tuberosum L.) that leave small amounts of crop residue in the surface after harvest. Therefore it is important to implement best management practices that reduce potential wind erosion and that we understand how cropping systems are impacting soil erosion, carbon dynamics, and properties of rangeland sandy soils. We evaluate the effects of cropping systems on soil physical and chemical properties of rangeland sandy soils. The cropping system included a small grain-potato rotation. An uncultivated rangeland site and three fields that two decades ago were converted from rangeland into cultivated center-pivot-irrigation-sprinkler fields were also sampled. Plant and soil samples were collected in the rangeland area and the three adjacent cultivated sites. The soils at these sites were classified as a Gunbarrel loamy sand (Mixed, frigid Typic Psammaquent). We found that for the rangeland site, soil where brush species were growing exhibited C sequestration and increases in soil organic matter (SOM) while the bare soil areas of the rangeland are losing significant amounts of fine particles, nutrients and soil organic carbon (SOM-C) mainly due to wind erosion. When we compared the cultivated sites to the uncultivated rangeland, we found that the SOM-C and soil organic matter nitrogen (SOM-N) increased with increases in crop residue returned into the soils. Our results showed that even with potato crops, which are high intensity cultivated cropping systems, we can maintain the SOM-C with a rotation of two small grain crops (all residue incorporated) and one potato crop, or potentially increase the average SOM-C with a rotation of four small grain crops (all residue incorporated) and one potato crop. Erosion losses of fine silt and clay particles were reduced with the inclusion of small grains. Small grains have the potential to contribute to the conservation of SOM and/or sequester SOM-C and SOM-N for these rangeland systems that have very low C content and that are also losing C from their bare soils areas (40%). Cultivation of these rangelands using rotations with at least two small grain crops can reduce erosion and maintain SOM-C and increasing the number of small grain crops grown successfully in rotation above two will potentially contribute to C and N sequestration as SOM and to the sequestration of macro- and micro-nutrients.