The study explores the potential of introducing an additional crop during dry season in Rwanda, comparing the efficiency of in situ soil moisture conservation techniques to sustain rain-fed agriculture. Comparative study of in situ soil moisture conservation techniques in bench terraces and unterraced field with maize crop had been conducted from June 2007 to October 2007. Bench terrace increased the average soil moisture content in 90 cm soil depth by more than 50% than that of unterraced land. Within the bench terraced field compartment bund and ridges and furrows increased soil moisture by 19.5% and 27.9% higher than plain bed. In terms of efficiency of moisture conservation, ridges and furrows performed well with 85.8% followed by compartment bund with 75.9% in terraced field. Unterraced field conserved moisture very poorly with 13.9% efficiency inferring importance of bench terraces for soil moisture conservation. No maize grain yield was recorded in all the techniques because soil water depleted to 60% and above from the beginning of the cropping period inferring the need of supplementary irrigation. Analysis of rainfall, crop water demand and in situ moisture conservation reveals exciting opportunities for water productivity enhancements by integrating components of water management within the context of rain-fed farming through water harvesting and supplemental or microirrigation for dry spell mitigation. Detailed analysis is needed for feasibility of lift irrigation with different crops under different altitudes to derive suitable policy for hill land irrigation.