Citation Information

  • Title : Soil nitrogen dynamics under dryland alfalfa and durum-forage cropping sequences.
  • Source : Soil Science Society of America Journal
  • Publisher : Soil Science Society of America
  • Volume : 75
  • Issue : 2
  • Pages : 669-677
  • Year : 2011
  • DOI : 10.2136/sssaj201
  • ISBN : 10.2136/sssaj2010.0221
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Lenssen, A. W.
    • Sainju, U. M.
  • Climates: Steppe (BSh, BSk).
  • Cropping Systems: Barley. Continuous cropping. Dryland cropping system. Wheat.
  • Countries: USA.

Summary

Forages grown in rotation with or without cereals to sustain dryland soil water content and crop production may influence N dynamics. We evaluated the effect of alfalfa ( Medicago sativa L.) and durum ( Triticum turgidum L.)-annual forage cropping sequences on above-(stems+leaves) and belowground (roots) biomass N, dryland soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH 4-N, and NO 3-N contents at the 0- to 120-cm depth in northeastern Montana from 2002 to 2005. Cropping sequences were continuous alfalfa (CA), durum-barley ( Hordeum vulgare L.) hay (D-B), durum-foxtail millet ( Setaria italica L.) hay (D-M), durum-Austrian winter pea ( Pisum sativum L.)/barley mixture hay (D-P/B), and durum-fallow (D-F). From 2002 to 2005, total above- and belowground biomass N was 20 to 97 kg N ha -1 greater under CA than other treatments. In 2005, STN, PON, and PNM were 7 to 490 kg N ha -1 greater under CA than D-M, D-B, and D-P/B at 0 to 30 cm but varied by treatment at other depths. In contrast, MBN at 0 to 15 cm and NH 4-N content at 30 to 90 cm were 23 to 37 kg N ha -1 greater under D-B than D-M and D-F. The NO 3-N content at 0 to 120 cm was 65 to 107 kg N ha -1 greater under D-P/B than other treatments. Even though haying removed a greater amount of N, alfalfa increased surface soil N storage and mineralization and reduced the potential for N leaching compared with durum-annual forages, probably due to increased root growth or N 2 fixation. Durum-pea/barley hay, however, increased N mineralization and availability in subsoil layers, probably due to greater root N concentration or downward movement of water-soluble N.

Full Text Link