Citation Information

  • Title : Organic acid metabolism in Citrus grandis leaves and roots is differently affected by nitric oxide and aluminum interactions.
  • Source : Scientia Horticulturae
  • Publisher : Elsevier
  • Volume : 133
  • Pages : 40–46
  • Year : 2012
  • DOI : 10.1016/j.scient
  • ISBN : 10.1016/j.scienta.2011.10.011
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Ma, C. L.
    • Wang, P.
    • Guo, P.
    • Peng, H. Y.
    • Chen, L .S.
    • Yang, L. T.
  • Climates: Temperate (C). Humid subtropical (Cwa, Cfa).
  • Cropping Systems: Citrus. Fruit. Irrigated cropping systems.
  • Countries: China.

Summary

'Sour pummelo' ( Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 0 (-Al) and 1.2 mM (+Al) AlCl 3.6H 2O * 0, 10 and 500 M sodium nitroprusside (SNP), a nitric oxide (NO) donor. Leaf malate content did not significantly change in response to SNP with or without aluminum (Al) except for an increase under 1.2 mM Al+10 M SNP, while leaf citrate content decreased with increasing SNP supply. Root malate content kept unchanging with or without Al except for an increase under 500 M SNP in the absence of Al, while SNP-treated roots had a higher or similar citrate content. Al decreased or did not affect malate content in roots and leaves, and citrate content in roots, but increased leaf citrate content. Al-treated roots and leaves displayed lower or similar activities of acid-metabolizing enzymes [phospho enolpyruvate carboxylase (PEPC), NAD-malate dehydrogenase (NAD-MDH), NADP-malic enzyme (NADP-ME), citrate synthase (CS), aconitase (ACO), NADP-isocitrate dehydrogenase (NADP-IDH), phospho enolpyruvate phosphatase (PEPP) and pyruvate kinase (PK)] except that they had higher or similar activities of NADP-ME and PK and Al-treated leaves had a higher or similar activity of PEPP. In conclusion, the OA metabolism in leaves and roots is differently affected by NO and Al interactions.

Full Text Link