Water and nitrogen in soil have a great effect on growth and productivity of cucumber (Cucumis sativus L.), which is widely cultivated with high economic benefit in solar greenhouse in North China. To understand the effects of alternate furrow irrigation (AFI) and nitrogen levels on migration of water and nitrogen in soil, accumulation of nitrate-nitrogen (NO3--N) and root growth of cucumber in the solar greenhouse, cucumber variety Jinyu No. 5 was fertilized with different amounts of nitrogen [no nitrogen (CK2), optimal nitrogen (AINo), conventional nitrogen (AINc)] under AFI. Conventional furrow irrigation and conventional nitrogen were used as the control (CK1). The results indicated that soil NO3--N content, electrical conductivity values in the 0-20 cm, 20-40 cm and 40-60 cm layers, and soil residual NO3--N content at the end of the two growing seasons were all increased as the nitrogen fertilizer increased under AFI, especially in the top layer of soil (0-20 cm). However, compared with conventional furrow irrigation, AFI with optimized fertilizer led to increases of root length, root biomass yield, root-shoot ratio of the cucumber crop and economic coefficient (K). AFI also greatly improved both biomass and economic yield water use efficiency. Altogether, AFI with optimized fertilizer (AINo) was a good irrigation practice in the solar greenhouse for increasing the use efficiency of both water and fertilizer, reducing salinity accumulation in the top soil, and maintaining economic yield of cucumber crop. (C) 2012 Elsevier B.V. All rights reserved.