Citation Information

  • Title : Compression characteristics of non-treated and steam-exploded barley, canola, oat, and wheat straw grinds.
  • Source : Applied Engineering in Agriculture
  • Publisher : American Society of Agricultural Engineers
  • Volume : 26
  • Issue : 4
  • Pages : 617‐632
  • Year : 2010
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Tabil, L. G.
    • Adapa, P. K.
    • Schoenau, G. J.
  • Climates: Continental (D). Warm summer continental/Hemiboreal (Dsb, Dfb, Dwb).
  • Cropping Systems: Canola. Oats. Wheat.
  • Countries: Canada.

Summary

Compaction of low bulk density agricultural biomass is a critical and desirable operation for sustainable and economic availability of feedstock for biofuel industry. A comprehensive study of the compression characteristics (density of pellet and total specific energy required for compression) of ground non-treated and steam-exploded barley, canola, oat, and wheat straw obtained from three hammer mill screen sizes of 6.4, 3.2 and 1.6 mm at 10% moisture content (wb) was conducted. Four preset pressures of 31.6, 63.2, 94.7, and 138.9 MPa were applied using an Instron testing machine to compress samples in a cylindrical die. Ground steam-exploded barley straw at screen sizes of either 3.2 or 1.6 mm produced high density compacts, while ground steam-exploded canola, oat, and wheat straw at screen sizes of 6.4, 3.2 or 1.6 mm produced high density compacts. Steam-exploded barley straw for 3.2 mm at 138.9 MPa produced compacts having 13% higher density and consumed 19% lower total specific energy compared to non-treated straw. Steam-exploded canola straw for 1.6 mm at 138.9 MPa produced compacts having 13% higher density and consumed 22% higher total specific energy compared to non-treated straw. Steam-exploded oat straw for 3.2 mm at 94.7 MPa produced compacts having 19% higher density and consumed 13% higher total specific energy compared to non-treated straw. Steam-exploded wheat straw for 6.4 mm at 138.9 MPa produced compacts having 17% higher density and consumed 17% higher total specific energy compared to non-treated straw. Three compression models, namely: Jones model, Cooper-Eaton model, and Kawakita-Ludde model were considered to determine the pressure-volume and pressure-density relationship of non-treated and steam-exploded straws. Kawakita-Ludde model provided the best fit to the experimental data having R 2 values of 0.99 for non-treated straw and 1.00 for steam-exploded biomass samples. The steam-exploded straw had higher porosity than non-treated straw. In addition, the steam-exploded straw was easier to compress since it had lower yield strength or failure stress values compared to non-treated straw.

Full Text Link