One of the issues with respect to climate change involves its influence on the distribution of future crop yields. Many studies have been done regarding the effect on the mean of such distributions but few have addressed the effect on variance. Furthermore, those that have been done generally report the variance from crop simulators, not from observations. This paper examines the potential effects of climate change on crop yield variance in the context of current observed yields and then extrapolates to the effects under projected climate change. In particular, maximum likelihood panel data estimates of the impacts of climate on year-to-year yield variability are constructed for the major U.S. agricultural crops. The panel data technique used embodies a variance estimate developed along the lines of the stochastic production function approach suggested by Just and Pope. The estimation results indicate that changes in climate modify crop yield levels and variances in a crop-specific fashion. For sorghum, rainfall and temperature increases are found to increase yield level and variability. On the other hand, precipitation and temperature are individually found to have opposite effects on corn yield levels and variability.