Different tillage and residue practices could potentially lead to significant differences in both crop production and soil properties, especially if both practices are implemented over a long time period and on continuous monoculture corn (Zea mays L.). The objective of this research was to determine how differing tillage practices and corn residues affected soil bulk density, corn emergence rates and crop yields over an 11-year period. The experimental site consisted of three tillage practices (no-till, NT; reduced tillage, RT; and conventional tillage, CT) and two residue practices (with grain corn residue, R; without residue (corn crop harvested for silage), NR). Bulk density was 10% higher in NT (1.37 Mg m(-3)) than in CT (1.23 Mg m(-3)), particularly at the 0-0.10 m depth. Spring corn emergence in NTR was slower by 14-63% than all other treatments in 1992-1994. In 1996, corn emergence in the NTR treatment was 18-30% slower, and NTNR was 5-30% faster than all other treatments. No-till with residue (NTR) possibly had the slowest overall emergence due to the higher surface residue cover (8.5 Mg ha(-1) in 1996) and higher bulk density (1.37 Mg m(-3) over the 11 years). Long-term mean dry matter corn yields were not affected by tillage and residue practices during the course of this study; rather climatic-related differences seemed to have a greater influence on the variation in dry matter yields. The long-term cropping of corn under different tillage and residue practices can change bulk density in the surface soil layer, vary the corn emergence without affecting yields, and produce comparable yields between all the tillage and residue practices. (C) 2004 Elsevier B.V. All rights reserved.