Citation Information

  • Title : Integrated nutrient management and cropping systems impact on yield, water productivity and net return in valley soils of north-west Himalayas.
  • Source : Indian Journal of Soil Conservation
  • Publisher : Indian Associations of Soil & Water Conservationists
  • Volume : 39
  • Issue : 3
  • Pages : 236-242
  • Year : 2011
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Dadhwal, K. S.
    • Sharma, N. K.
    • Ghosh, B. N.
  • Climates: Temperate (C). Humid subtropical (Cwa, Cfa).
  • Cropping Systems: Intercropping. Maize. Dryland cropping system. Wheat.
  • Countries: India.

Summary

Agricultural land use coupled with cropping system and integrated nutrient management (INM) can enhance crop yields, water productivity, improve soil health and income to the farmers. To test this hypothesis, four technologies namely rainfed; (i) maize+cowpea (1:2)-wheat, (ii) maizewheat+mustard (9:1), (iii) irrigated, paddy-wheat, paddy (System of rice intensification, SRI) - wheat and (iv) maize-potato-onion with INM to each crop rotations were experimented and demonstrated on farmer's fields in the agroclimatic zone of valley land of north-west Himalayas (Agro-ecological 14) in the districts of Dehradun (Uftarakhand) and Sirmour (Himachal pradesh) during 2007-09. Two years pooled data indicated that maize-potato-onion rotation rendered highest maize equivalent yield (18762 kg ha -1) among all the cropping system, followed by paddy wheat (10789 kg ha -1) and maize-wheat+mustard intercropping system (4826 kg ha -1). Of the two rainfed systems, maize-wheat+mustard gave slightly higher (1.5%) maize equivalent yield than maize- + cowpea-wheat sequence whereas under limited irrigation condition, maize-potato-onion exhibited significantly higher (73.9%) maize equivalent yield than paddy-wheat system. Results also revealed that on an average, yield, water use efficiency (WUE) and net return increased to the tune of 40.7, 44.7 and 89.9%, respectively on adoption of technology in the farmer's field over conventional farming irrespective of crop rotations. Water use in system of rice intensification (SRI) with INM technology was 80-90 mm less than fanners practice. On adoption of INM technology, the soil quality index (SQI) improved from 11.9 to 18.8% exhibiting highest in maize-potato-onion and lowest in paddy-wheat system. It is inferred that maize-potato-onion under limited irrigation treatment and maize-wheat+mustard under rainfed conditions are the best management options for maximizing water productivity, net return and soil quality.

Full Text Link