Soil aggregate stability is a frequently used indicator of soil quality, but there is no standard methodology for assessing this indicator. Current methods generally measure only a portion of the soil or use either dry-sieved or wet-sieved aggregates. Our objective was to develop a whole soil stability index (WSSI) by combining data from dry aggregate size distribution and water-stable aggregation along with a 'quality' constant for each aggregate size class. The quality constant was based on the impact of aggregate size on soil quality indicators. Soil quality indicators can be loosely defined as those soil properties and processes that have the greatest sensitivity to changes in soil function. The WSSI was hypothesized to have a better relationship to the impacts of aboveground management than other soil aggregation indices such as a mean weight diameter (MWD), geometric mean diameter (GIVID), and the normalized stability index (NSI). Soil samples used in this study were collected from sites established on the same or similar soil types at the Northern Great Plains Research Laboratory in Mandan, ND. By utilizing dry aggregate size distribution, water-stable aggregation, and the quality constant, the WSSI detected differences in soil quality due to management (such as amount of disturbance, plant cover, and crop rotation) with the highest values occurring for the undisturbed, native range and the lowest values for conventional tillage, fallow treatments. The WSSI had the best relationship with management and is recommended as a standard measurement for soil aggregation. Published by Elsevier B.V.