Citation Information

  • Title : Tillage, cropping systems, and nitrogen fertilizer source effects on soil carbon sequestration and fractions
  • Source : Journal of Environmental Quality
  • Publisher : American Society of Agronomy/Crop Science Society of America/Soil Science Society of America
  • Volume : 37
  • Issue : 3
  • Pages : 880-888
  • Year : 2008
  • DOI : 10.2134/jeq2007.
  • ISBN : 10.2134/jeq2007.0241
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Reddy, K. C.
    • Tazisong, I. A.
    • Nyakatawa, E. Z.
    • Senwo, Z. N.
    • Sainju, U. M.
  • Climates: Temperate (C). Humid subtropical (Cwa, Cfa).
  • Cropping Systems: Till cropping systems. Conventional cropping systems. Maize. Cotton. No-till cropping systems. Rye.
  • Countries: USA.

Summary

Quantification of soil carbon (C) cycling as influenced by management practices is needed for C sequestration and soil quality improvement. We evaluated the 10-yr effects of tillage, cropping system, and N source on crop residue and soil C fractions at 0-to 20-cm depth in Decatur silt loam (clayey, kaolinitic, thermic, Typic Paleudults) in northern Alabama, USA. Treatments were incomplete factorial combinations of three tillage practices (no-till [NT], mulch till [MT], and conventional till [CT]), two cropping systems (cotton [Gossypium hirsutum L.]-cotton-corn [Zea mays L.] and rye [Secale cereale L.]/cotton-rye/cotton-corn), and two N fertilization sources and rates (0 and 100 kg N ha(-1) from NH4NO3 and 100 and 200 kg N ha(-1) from poultry litter). Carbon fractions weresoil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). Crop residue varied among treatments and years and total residue from 1997 to 2005 was greater in rye/cottoil-rye/cotton-corn than in cotton-cotton-corn and greater with NH4NO3 than with poultry litter at 100 kg N ha(-1). The SOC content at 0 to 20 cm, after 10 yr was greater with poultry litter than with NH4NO3 in NT and CT, resulting in a C sequestration rate of 510 kg C ha(-1) yr(-1) with poultry litter compared with -120 to 147 kg C ha(-1) yr(-1) with NH4NO3. Poultry litter also increased PCM and MBC compared with NH4NO3. Cropping increased SOC, POC, and PCM compared with fallow in NT Long-term poultry litter application or continuous cropping increased soil C storage and microbial biomass and activity compared with inorganic N fertilization or fallow, indicating that these management practices can sequester C, offset atmospheric CO2 levels, and improve soil and environmental quality.

Full Text Link