The introduction of a living cover crop during a cash crop growth cycle (relay intercropping) and its maintenance after the cash crop harvest may help to preserve biodiversity, increase soil organic matter content and carbon sequestration and provide other ecosystem services, such as natural pest regulation or nutrient recycling, by increasing useful biotic interactions within the agroecosystem. We studied the impact of various approaches to manage a red fescue cover crop in a winter wheat crop in terms of light, water and nitrogen competition, using the STICS crop model adapted for intercropping. The STICS model for wheat/fescue intercropping was first evaluated on two years of experimental data obtained in the field. It gave satisfactory statistical results for the prediction of dry matter, leaf area index (LAI) and nitrogen accumulation in the two species, and for nitrogen and water dynamics in the soil. By simulating unmeasured variables, such as transpiration, the model improves our understanding of the performance of the intercrop in the field. For example, we showed that the intercropping system was more efficient that wheat grown as a sole crop, in terms of nitrogen accumulation and decreasing soil nitrogen levels before the leaching period. However, it also resulted in lower wheat yields. We then used the STICS model to compare four intercropping management scenarios differing in terms of the date of red fescue emergence, over 35 climatic years. We found that, in most climatic scenarios, the emergence of the fescue crop during the late tillering phase of the wheat crop gave the best compromise between wheat yield overall nitrogen accumulation and radiation interception.