The effects of straw incorporation (early and late cultivation) and straw burning were contrasted in a split-plot study examining the impact of long-term straw residue management, and six fertilizer nitrogen (N) rates on soil mineral nitrogen, crop fertilizer N requirements and nitrate leaching losses. The experiments ran from 1984 to 1997 on light-textured soils at ADAS Gleadthorpe (Nottinghamshire, UK) and Morley Research Centre (Norfolk, UK). Soil incorporation of the straw residues returned an estimated 633 kg N/ha at Gleadthorpe and 429 kg N/ha at Morley on the treatment receiving 150 kg/ha per year fertilizer N since 1984. Straw disposal method had no consistent effect on grain and straw yields, crop N uptake, or optimal fertilizer N rates. In every year there was a positive response (Pearly incorporate >late plough. The incorporation of straw residues induced temporary N immobilization compared with the treatment where straw was burnt, while the earlier timing of tillage on the incorporate treatment resulted in slightly more mineral N compared with the later ploughed treatment. Fertilizer N rate increased (P < 0.001) soil mineral nitrogen at both sites. At Morley, there was more organic carbon in the plough layer where straw had been incorporated (mean 1.09 g/100 g) rather than burnt (mean 0.89 g/100 g), and a strong positive relationship between organic carbon and fertilizer N rate (r2 = 93.2%, P < 0.01). There was a detectable effect of fertilizer N on readily mineralizable N in the plough layer at both Gleadthorpe (P < 0.001) and Morley (P < 0.05). At Morley, there was a consistent trend (P = 0.06) for readily mineralizable N to be higher where straw had been incorporated rather than burnt, indicating that ploughing-in residues may contribute to soil nitrogen supply over the longer term.