Citation Information

  • Title : Net CO2 exchange and carbon budgets of a three-year crop rotation following conversion of perennial lands to annual cropping in Manitoba, Canada
  • Source : Agricultural and Forest Meteorology
  • Publisher : Elsevier
  • Volume : 182-183
  • Pages : 67-75
  • Year : 2013
  • DOI : 10.1016/j.agrfor
  • ISBN : 10.1016/j.agrformet.2013.07.008
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Fraser, T. J.
    • Amiro, B. D.
    • Taylor, A. M.
  • Climates: Warm summer continental/Hemiboreal (Dsb, Dfb, Dwb).
  • Cropping Systems: Canola. Crop-pasture rotations. Perennial agriculture.
  • Countries: Canada.

Summary

Eddy covariance flux towers were used to measure net ecosystem production over three adjacent agricultural fields in Manitoba, Canada, from 2009 to 2011. Two fields were converted from long-term perennial hay/pasture to annual cropping, while the third field served as a control field that was maintained as hay/pasture. One converted field had a rotation of oat-canola-oat crops, while the second was hay-oat-fallow. Weather was an important driver of inter-annual variability, with poor yields on all fields in 2011 because of dry conditions in summer, with the summer-fallow condition on one field caused by excess spring moisture not allowing planting. The cumulative net ecosystem production of the oat-canola-oat field showed a net CO2 emission of 100 g Cm-2, the hay-oat-fallow field emitted 500 g Cm-2, and the hay field gained 550 g C m(-2) by the end of the 30-month study period. The hay field had the highest cumulative gross primary production of 2500 g C m(-2), whereas the oat-canola-oat and hay-oat-fallow fields had only about 1400 g C m(-2). The perennial field had the advantage of both early- and late-season growth when crops were absent on the other fields. The hay and hay-oat-fallow fields had comparable cumulative ecosystem respiration (1400 g Cm-2). Manure additions contributed 300 g C m(-2) on the two converted fields. With harvest exports and manure additions included, the oat-canola-oat field was a carbon source of 240 g Cm-2, the hay-oat-fallow field was a source of 415 g C m(-2), and the hay/pasture field was a sink of 120 g C m(-2) over the 30-month period.

Full Text Link