Citation Information

  • Title : Carbon footprint of canola and mustard is a function of the rate of N fertilizer
  • Source : The International Journal of Life Cycle Assessment
  • Publisher : Springer-Verlag
  • Volume : 17
  • Issue : 1
  • Pages : 58-68
  • Year : 2012
  • DOI : 10.1007/s11367-0
  • ISBN : 10.1007/s11367-011-0337-z
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Brandt, S. A.
    • Malhi, S. S.
    • Huang, G.
    • Liang, C.
    • Gan, Y.
    • Katepa-Mupondwa, F.
  • Climates: Tropical monsoonal (Am). Steppe (BSh, BSk). Continental subarctic/Boreal/Taiga (Dsc, Dfc, Dwc). Continental subarctic (Dfd, Dwd).
  • Cropping Systems: No-till cropping systems.
  • Countries: Canada.

Summary

Best agricultural practices can be adopted to increase crop productivity and lower carbon footprint of grain products. The aims of this study were to provide a quantitative estimate of the carbon footprint of selected oilseed crops grown on the semiarid northern Great Plains and to determine the effects of N fertilization and environments on the carbon footprint. Five oilseed crops, Brassica napus canola, Brassica rapa canola, Brassica juncea canola, B. juncea mustard, and Sinapis alba mustard, were grown under the N rates of 0, 25, 50, 100, 150, 200, and 250 kg N ha(-1) at eight environsites (location x year combinations) in Saskatchewan, Canada. Straw and root decomposition and various production inputs were used to calculate greenhouse gas emissions and carbon footprints. Emissions from the production, transportation, storage, and delivery of N fertilizer to farm gates accounted for 42% of the total greenhouse gas emissions, and the direct and indirect emission from the application of N fertilizer in oilseed production added another 31% to the total emission. Emissions from N fertilization were nine times the emission from the use of pesticides and 11 times that of farming operations. Straw and root decomposition emitted 120 kg CO(2)eq ha(-1), contributing 10% to the total emission. Carbon footprint increased slightly as N rates increased from 0 to 50 kg N ha(-1), but as N rates increased from 50 to 250 kg N ha(-1), carbon footprint increased substantially for all five oilseed crops evaluated. Oilseeds grown at the humid Melfort site emitted 1,355 kg CO(2)eq ha(-1), 30% greater than emissions at the drier sites of Scott and Swift Current. Oilseeds grown at Melfort had their carbon footprint of 0.52 kg CO(2)eq kg(-1) of oilseed, 45% greater than that at Scott (0.45 kg CO(2)eq kg(-1) of oilseed), and 25% greater than that at Swift Current (0.45 kg CO(2)eq kg(-1) of oilseed). Carbon footprint of oilseeds was a function of the rate of N fertilizer, and the intensity of the functionality varied between environments. Key to lower carbon footprint in oilseeds is to improve N management practices.

Full Text Link