Citation Information

  • Title : Nitrous oxide emissions from an annual crop rotation on poorly drained soil on the Canadian Prairies
  • Source : Agricultural and Forest Meteorology
  • Publisher : Elsevier
  • Volume : 166
  • Issue : December
  • Pages : 41–49
  • Year : 2012
  • DOI : 10.1016/j.agrfor
  • ISBN : 10.1016/j.agrformet.2012.06.015
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Wagner-Riddle, C.
    • Maas, S. E.
    • Amiro, B. D.
    • Tenuta, M.
    • Glenn, A. J.
  • Climates: Warm summer continental/Hemiboreal (Dsb, Dfb, Dwb).
  • Cropping Systems: Maize. Till cropping systems. Wheat.
  • Countries: Canada.

Summary

Agricultural soils are a significant anthropogenic source of nitrous oxide (N2O) to the atmosphere. Despite likely having large emissions of N2O, there are no continuous multi-year studies of emissions from poorly drained floodplain soil. In the present study, the micrometeorological flux of N2O (E-N) was measured over three years (2006-2008) in a maize (Zea mays L.)/faba (Vicia faba minor L.)/spring-wheat (Triticum aestivum L) rotation in the Red River Valley, Manitoba, Canada on a gleyed humic verticol soil. Comparison of newly established reduced and intensive tillage treatments showed no difference in F-N within the constraints of the high variability between duplicate plots. The annual gap-filled Sigma F-N across tillage treatments was 5.5, 1.4, and 4.3 kg N ha(-1) in the maize, faba, and spring-wheat crop years, respectively. Emissions from fertilizer N addition and soil thaw the following spring was responsible for the greater Sigma F-N in the maize and spring-wheat years. Using four approaches to approximate background Sigma F-N resulted in estimates of 3.5-3.8% and 1.4-1.8% of applied fertilizer N emitted as N2O for the maize and spring-wheat crops, respectively. The CO2 global warming potential equivalent of Sigma F-N over the three study years was an emission of 5.4 Mg CO2-equiv. ha(-1) which adds to the previously determined C balance emission of 11.6 Mg CO2-equiv. ha(-1). (c) 2012 Elsevier B.V. All rights reserved.

Full Text Link