Citation Information

  • Title : Carbon balances in US croplands during the last two decades of the twentieth century
  • Source : Biogeochemistry
  • Publisher : Springer
  • Volume : 107
  • Issue : 1-3
  • Pages : 207-225
  • Year : 2012
  • DOI : 10.1007/s10533-0
  • ISBN : 10.1007/s10533-010-9546-y
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Williams, S.
    • Easter, M.
    • Paustian, K.
    • Lokupitiya, E.
    • Andren, O.
    • Katterer, T.
  • Climates: Humid subtropical (Cwa, Cfa). Hot summer continental (Dsa, Dfa, Dwa). Warm summer continental/Hemiboreal (Dsb, Dfb, Dwb).
  • Cropping Systems: Barley. Cereal crops. Maize. Sorghum. Soybean. Wheat.
  • Countries: USA.

Summary

Carbon (C) added to soil as organic matter in crop residues and carbon emitted to the atmosphere as CO(2) in soil respiration are key determinants of the C balance in cropland ecosystems. We used complete and comprehensive county-level yields and area data to estimate and analyze the spatial and temporal variability of regional and national scale residue C inputs, net primary productivity (NPP), and C stocks in US croplands from 1982 to 1997. Annual residue C inputs were highest in the North Central and Central and Northern Plains regions that comprise similar to 70% of US cropland. Average residue C inputs ranged from 1.8 (Delta States) to 3.0 (North Central region) Mg C ha(-1) year(-1), and average NPP ranged from 3.1 (Delta States) to 5.4 (Far West region) Mg C ha(-1) year(-1). Residue C inputs tended to be inversely proportional to the mean growing season temperature. A quadratic relationship incorporating the growing season mean temperature and total precipitation closely predicted the variation in residue C inputs in the North Central region and Central and Northern Plains. We analyzed the soil C balance using the crop residue database and the Introductory Carbon Balance regional Model (ICBMr). Soil C stocks (0-20 cm) on permanent cropland ranged between 3.07 and 3.1 Pg during the study period, with an average increase of similar to 4 Tg C year(-1), during the 1990s. Interannual variability in soil C stocks ranged from 0 to 20 Tg C (across a mean C stock of 3.08 +/- A 0.01 Pg) during the study period; interannual variability in residue C inputs varied between 1 and 43 Tg C (across a mean input of 220 +/- A 19 Tg). Such interannual variation has implications for national estimates of CO(2) emissions from cropland soils needed for implementation of greenhouse gas (GHG) mitigation strategies involving agriculture.

Full Text Link