Citation Information

  • Title : Simulation of soil organic carbon in long-term experiments in Poland using the DNDC model
  • Source : Journal of Food, Agriculture & Environment
  • Publisher : WFL Publisher
  • Volume : 10
  • Issue : 3-4
  • Pages : 1224-1229
  • Year : 2012
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Walker, M. B.
    • Faber, A.
    • Syp, A.
  • Climates: Warm summer continental/Hemiboreal (Dsb, Dfb, Dwb).
  • Cropping Systems: Barley. Maize. Potatoes. Wheat.
  • Countries:

Summary

In this paper, simulations with a Denitrification -Decomposition (DNDC) model were used to evaluate the impact of different management options on carbon (C) sequestration and emission of greenhouse gases: methane (CH 4) and nitrous oxide (N2O). Two cropping systems were analyzed. The first included potato, winter wheat, spring barley and forage maize (P-W-B-M). The second included potato, winter wheat, spring barley with clover and grass mixture (P-W-B-C). In both cropping systems, different farmyard manure (FYM) rates were applied. The application of additional nitrogen (N) using FYM increased the C sequestration, as well as N2O emissions and had a little effect on CH 4 uptake. An estimate into the average annual increases in N2O emissions, which were converted into carbon dioxide (CO2) equivalent emissions with 100-year global warming potential (GWP) multipliers, were offset by 56-144% of the C sequestration, depending on the management option. After 16 years of the experiment, the accumulation of C and N per hectare increased in the soil organic matter (SOM) pool. In P-W-B-M rotation, with manure applied at 325 kg N ha(-1), the accumulation of C increased to 5,760 and N 585 kg ha(-1), respectively. In P-W-B-C rotation, where a higher rate of manure was applied, the increase of C was at 10,796 and N 740 kg ha(-1). The highest influence in the rise of C and N accumulation was in humates. The high value of C sequestration in soil outweighs the emissions of N2O. In P-W-B-M rotations, the rate of applied FYM switched its average annual net GWP balance from net losses to a net sink. In P-W-B-C rotations, the applied FYM increased the annual rate of GHG emissions by 3%. The average annual N2O emissions increased by 44% under P-W-B-C rotation and by 142% under P-W-B-M rotations. Increases in the soil organic carbon (SOC) were by 234% and 408%, respectively, for P-W-B-C and P-W-B-M rotations. Our study showed that usage of FYM should be managed correctly, because applications at high rates have a negative impact on environment.

Full Text Link