Citation Information

  • Title : Soil gaseous N2O and CH4 emissions and carbon pool due to integrated crop-livestock in a subtropical Ferralsol
  • Source : Agriculture Ecosystems and Evviroment
  • Publisher : ELSEVIER SCIENCE BV
  • Volume : 190
  • Issue : SI
  • Pages : 87-93
  • Year : 2014
  • DOI : 10.1016/j.agee.2013.09.008
  • ISBN : 0167-8809
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Barth, G.
    • Pauletti, V.
    • Tomazi, M.
    • de Moraes, A.
    • Zanatta, J. A.
    • Bayer, C.
    • Dieckow, J.
    • Piva, J. T.
    • Piccolo, M. de C.
  • Climates: Humid subtropical (Cwa, Cfa).
  • Cropping Systems: Maize. Grazing systems. Rye. Till cropping systems. Continuous cropping. Cover cropping. Crop-pasture rotations.
  • Countries: Brazil.

Summary

We assessed the impact of integrated crop-livestock (CL), with silage maize (Zea mays L.) in summer and grazed annual-ryegrass (Lolium multiflorum Lam.) in winter, and continuous crop (CC), with annualryegrass used only as cover-crop, on net greenhouse gas emission from soil (NetGHG-S) in a subtropical Ferralsol of a 3.5-year-old experiment in Brazil. Emissions from animal excreta in CL were estimated. Soil N2O fluxes after N application to maize were higher in CL (max. 181 mu g N2O-N m(-2) h(-1)) than in CC (max. 132 mu g N2O-N m(-2) h(-1)). The cumulative annual N2O emission from soil in CL surpassed that in CC by more than three-times (4.26 vs. 1.26 kg N2O-N ha(-1), p < 0.01), possibly because of supplementary N application to grazed ryegrass in CL (N was not applied in cover-crop ryegrass of CC) and a certain degree of soil compaction visually observed in the first few centimetres after grazing. The estimated annual N2O emission from excreta in CL was 2.35 kg N2O-N ha(-1). Cumulative annual CH4 emission was not affected significantly (1.65 in CL vs. 1.08 kg CH4-C ha(-1) in CC, p = 0.27). Soil organic carbon (OC) stocks were not affected by soil use systems, neither in 0-20-cm (67.88 in CL vs. 67.20 Mg ha(-1) in CC, p = 0.62) or 0-100-cm (234.74 in CL vs. 234.61 Mg ha(-1) in CC, p = 0.97). The NetGHG-S was 0.652 Mg CO2-C-eq ha(-1) year(-1) higher in CL than in CC. Crop-livestock emitted more N2O than CC and no soil OC sequestration occurred to offset that emission. Management of fertiliser- and excreta-N must be focused as a strategy to mitigate N2O fluxes in CL. (C) 2013 Elsevier B.V. All rights reserved.

Full Text Link