Citation Information

  • Title : Soil carbon accumulation under switchgrass barriers.
  • Source : AGRONOMY JOURNAL
  • Publisher : American Society of Agronomy
  • Volume : 106
  • Issue : 6
  • Pages : 2185-2192
  • Year : 2014
  • DOI : 10.2134/agronj14.0227
  • ISBN : 0002-1962
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Eisenhauer, D. E.
    • Gilley, J. E.
    • Blanco-Canqui, H.
    • Jasa, P. J.
    • Boldt, A.
  • Climates:
  • Cropping Systems: Maize. No-till cropping systems. Sorghum. Soybean. Till cropping systems.
  • Countries:

Summary

The benefits of grass barriers or hedges for reducing offsite transport of non-point-source water pollutants from croplands are well recognized, but their ancillary benefits on soil properties have received less attention. We studied the 15-yr cumulative effects of narrow and perennial switchgrass ( Panicum virgatum L.) barriers on soil organic C (SOC), total N, particulate organic matter (POM), and associated soil structural properties as compared with the cropped area on an Aksarben silty clay loam (fine, smectitic, mesic Typic Argiudoll) with 5.4% slope in eastern Nebraska. Five switchgrass barriers were established in 1998 at ~38-m intervals parallel to the crop rows in a field under a conventional tillage and no-till grain sorghum [ Sorghum bicolor (L.) Moench]-soybean [ Glycine max (L.) Merr.]-corn ( Zea mays L.) rotation. Compared with the cropped area, switchgrass barriers accumulated about 0.85 Mg ha -1 yr -1 of SOC and 80 kg ha -1 yr -1 of total soil N at the 0 to 15 cm soil depth. Switchgrass barriers also increased coarse POM by 60%. Mean weight diameter of water-stable aggregates increased by 70% at 0 to 15 cm and by 40% at 15 to 60 cm, indicating that switchgrass barriers improved soil aggregation at deeper depths. Large (4.75-8 mm) macroaggregates under switchgrass barriers contained 30% more SOC than those under the cropped area. Switchgrass-induced changes in SOC concentration were positively associated with aggregate stability ( r=0.89***) and porosity ( r=0.47*). Overall, switchgrass barriers integrated with intensively managed agroecosystems can increase the SOC pool and improve soil structural properties.

Full Text Link