Weather affects the severity of many plant diseases, and climate change is likely to alter the patterns of crop disease severity. Evaluating possible future patterns can help focus crop breeding and disease management research. We examined the global effect of climate change on potato late blight, the disease that caused the Irish potato famine and still is a common potato disease around the world. We used a metamodel and considered three global climate models for the A2 greenhouse gas emission scenario for three 20-year time-slices: 2000-2019, 2040-2059 and 2080-2099. In addition to global analyses, five regions were evaluated where potato is an important crop: the Andean Highlands, Indo-Gangetic Plain and Himalayan Highlands, Southeast Asian Highlands, Ethiopian Highlands, and Lake Kivu Highlands in Sub-Saharan Africa. We found that the average global risk of potato late blight increases initially, when compared with historic climate data, and then declines as planting dates shift to cooler seasons. Risk in the agro-ecosystems analyzed, varied from a large increase in risk in the Lake Kivu Highlands in Rwanda to decreases in the Southeast Asian Highlands of Indonesia.