Citation Information

  • Title : The myth of nitrogen fertilization for soil carbon sequestration
  • Source : Journal of Environmental Quality
  • Publisher : American Society of Agronomy/Crop Science Society of America/Soil Science Society of America
  • Volume : 36
  • Issue : 6
  • Pages : 1821-1832
  • Year : 2007
  • DOI : 10.2134/jeq2007.
  • ISBN : 10.2134/jeq2007.
  • Document Type : Journal Article
  • Language : English
  • Authors:
    • Boast, C. W.
    • Ellsworth, T. R.
    • Mulvaney, R. L.
    • Khan, S. A.
  • Climates: Continental (D). Hot summer continental (Dsa, Dfa, Dwa). Warm summer continental/Hemiboreal (Dsb, Dfb, Dwb).
  • Cropping Systems: Maize. Irrigated cropping systems. Oats. Soybean. Cover cropping. Till cropping systems.
  • Countries: USA.

Summary

Intensive use of N fertilizers in modern agriculture is motivated by the economic value of high grain yields and is generally perceived to sequester soil organic C by increasing the input of crop residues. This perception is at odds with a century of soil organic C data reported herein for Morrow Plots, the world's oldest experimental site under continuous corn (Zea mays L.). After 40 to 50 yr of synthetic fertilization that exceeded grain N removal by 60 to 190%, a net decline occurred in soil C despite increasingly massive residue C incorporation, the decline being more extensive for a corn-soybean (Glycine max L. Merr.) or corn-oats (Avena sativa L.)-hay rotation than for continuous corn and of greater intensity for the profile (0-46 cm) than the surface soil. These findings implicate fertilizer N in promoting the decomposition of crop residues and soil organic matter and are consistent with data from numerous cropping experiments involving synthetic N fertilization in the USA Corn Belt and elsewhere, although not with the interpretation usually provided. These are important implications for soil C sequestration because the yield-based input of fertilizer N has commonly exceeded grain N removal for corn production on fertile soils since the 1960s. To mitigate the ongoing consequences of soil deterioration, atmospheric CO2 enrichment, and NO3- pollution of ground and surface waters, N fertilization should be managed by site-specific assessment of soil N availability. Current fertilizer N managment practices, if combined with corn stover removal for bioenergy production; exacerbate soil C loss.

Full Text Link