Australian agricultural industries contribute approximately 14.6% of net annual national greenhouse gas (GHG) emissions, with N 2O emissions from agricultural soils the second greatest source of these emissions. Given that 25 M ha of land in Australia is cropped, the technical potential for GHG emissions reduction in Australian grain production systems is substantial. The New South Wales Department of Primary Industries (NSW DPI) has developed research capacity in Life Cycle Assessment (LCA) to assess this mitigation potential. In this paper we provide insights into the regionally-specific approach that we are taking, not only to provide credible management options at a grain grower level and ensure that detailed data are available for analysis by participants in the downstream supply chain, but also to provide data which, in an aggregated form, will underpin market access and inform national policy development. We report on initial NSW DPI studies and discuss a new project, funded by the Grains Research and Development Corporation (GRDC), to determine emissions reduction opportunities for each of Australia's agro-ecological zones. Initial studies show total emissions from wheat production in the order of 200 kg CO 2-e per tonne, with values ranging down to 140 kg CO 2-e per tonne. In one study, replacing synthetic nitrogenous fertiliser with biologically fixed N reduced emissions to 33% of prior values. The new project is particularly concerned with developing accurate foreground data by triangulating several sources of published literature (including official statistics) and conducting 'groundtruthing' through panels of regionally-based advisors to increase data specificity. The LCAs and associated mitigation strategies will be underpinned by a median and relevant distribution of values for inputs, practices and yields, with system assumptions clearly documented.