Winter wheat ( Triticum aestivum L.)-summer fallow (WW-SF) using conventional tillage (CT), the predominant cropping system in eastern Oregon, has increased soil erosion and depleted soil organic carbon (SOC). This research evaluates no-tillage (NT) systems designed to reduce these negative impacts on soil. In this long-term experiment (2004-2010), WW-SF using CT was compared with annual winter wheat (WW-WW), annual spring wheat (SW-SW), annual spring barley ( Hordeum vulgare L.) (SB-SB), winter wheat-chemical fallow (WW-CF), winter wheat-winter pea ( Pisum sativum L.) (WW-WP), and winter wheat-spring barley-chemical fallow rotation (WW-SB-CF), using NT. Measurements included, phenology, plant population, grain yield and yield components, residues, SOC, soil moisture, and precipitation. Water-use efficiency (WUE) was derived from precipitation and yield data. Under annual cropping, WW-WP and SB-SB produced higher yields than WW-WW and SW-SW. Grain yields in rotations with fallow (WW-SF, WW-CF, and WW-SB-CF) were not significantly different. On an annual basis, SB-SB and WW-WP produced the highest and lowest yields, respectively. The WUEs of fallow rotations, SB-SB, and SW-SW, were not different but were higher than WUEs of WW-WP and WW-WW. Residue cover and SOC were highest under annual cropping systems and lowest following peas in WW-WP and SF in WW-SF. We conclude that rotations with fallow using NT (WW-CF and WW-SB-CF) can replace the traditional WW-SF system without yield penalty.