Current atmospheric CO 2 levels are about 400 mol mol -1 and are predicted to rise to 650 mol mol -1 later this century. Although the positive and negative impacts of CO 2 on plants are well documented, little is known about interactions with pests and diseases. If disease severity increases under future environmental conditions, then it becomes imperative to understand the impacts of pathogens on crop production in order to minimize crop losses and maximize food production. Barley yellow dwarf virus (BYDV) adversely affects the yield and quality of economically important crops including wheat, barley and oats. It is transmitted by numerous aphid species and causes a serious disease of cereal crops worldwide. This study examined the effects of ambient (aCO 2; 400 mol mol -1) and elevated CO 2 (eCO 2; 650 mol mol -1) on noninfected and BYDV-infected wheat. Using a RT-qPCR technique, we measured virus titre from aCO 2 and eCO 2 treatments. BYDV titre increased significantly by 36.8% in leaves of wheat grown under eCO 2 conditions compared to aCO 2. Plant growth parameters including height, tiller number, leaf area and biomass were generally higher in plants exposed to higher CO 2 levels but increased growth did not explain the increase in BYDV titre in these plants. High virus titre in plants has been shown to have a significant negative effect on plant yield and causes earlier and more pronounced symptom expression increasing the probability of virus spread by insects. The combination of these factors could negatively impact food production in Australia and worldwide under future climate conditions. This is the first quantitative evidence that BYDV titre increases in plants grown under elevated CO 2 levels.