To investigate the fate of urea nitrogen (N) applied to vegetable fields, three N rates, N0 (0 kg N/ha), N1(225 or 240 kg N/ha) and N2 (450 or 480 kg N/ha) were applied to a rotation system. Nitrogen fertilizer recovery (NFR), N residue in soil, and N losses were measured in situ. Higher N application rates resulted in lower NFR, and increased N residues in soil and losses. The NFR, Chinese cabbage, and eggplant were different in the N1 and N2 groups (P < 0.01). The ratios of N fertilizer residue at 0-60 cm deep ranged from 30.2 to 41.1 % (N1), and 33.1 to 57.7 % (N2). The N loss ratios were only 6.6 % (N1) and 11.9 % (N2), because of the lower precipitation rates and temperatures characteristic of its growing season; meanwhile, N losses were 31.1 and 37.4 % in cayenne pepper, and 24.1 and 29.2 % in eggplants in the N1 and N2 treatments, respectively. The main pathways of N loss were leaching, followed by gaseous losses; these were major pathways of N loss in seasons with lower precipitation rates. NH3 volatilization was correlated with soil temperature (P < 0.01), and N2O emissions were correlated with soil moisture in the N1 treatment and with soil NH4 (+)-N concentration in the N2 treatment (P < 0.01). Denitrification rates were correlated with soil moisture in the N0 and N1 treatments, and with NO3 (-)-N content in the N2 treatment (P < 0.01). Finally, loss due to runoff was correlated with precipitation (P < 0.01).