• Authors:
    • Lal,R.
    • Dubey,A.
  • Source: Journal of Crop Improvement
  • Volume: 23
  • Issue: 4
  • Year: 2009
  • Summary: Sustainability of agricultural systems depends on their carbon (C) footprint, and the C output:C input ratio. Thus, this study was conducted with the objectives to: (i) assess the agricultural C emissions in relation to predominant farming systems in Punjab, India, and Ohio, USA; (ii) evaluate C-use efficiency of production systems; and (iii) determine the relative sustainability of agronomic production systems as determined by their C footprints. The data collated on C-based input into the soil for predominant crops for both regions included the amounts of fertilizers (N, P, K), herbicides and pesticides used for each crop annually, tillage methods, cropland area, total production of each crop, area under different farming systems, water-management practices (e.g., tubewell irrigation), and total number of livestock. These data were used to compute C equivalent (CE) per hectare of input and output, and the relative sustainability indices as a measure of the C-production efficiency. There existed a linear relationship observed between C input and C output for Punjab, indicating that an increase of 1 Tg/yr (1 Tg=teragram=10 12 g=million ton) of C input resulted in the corresponding C output of ~12 Tg/yr. A similar linear relationship between input and net C output between the 1930s and 1980s was observed for Ohio, and the ratio reached a plateau during 1990s. The average C-sustainability index (increase in C output as % of C-based input) value for Ohio from 1990 to 2005 was 35-43, almost 2.5 times that of Punjab. Since 1989, there has been a major shift in Ohio from conventional tillage to reduced and conservation tillage along with a decline in fertilizer use. No-till farming is practiced on about 35% of the cultivated area, which involves elimination of plowing, retention of crop residue mulch, and judicious use of chemicals. In Punjab, crop residues are removed, resulting in loss of C from the soil organic carbon pool. Hence, the C-based sustainability index is much higher in Ohio than in Punjab. C-efficient systems are more sustainable than inefficient farming systems, and residue removal reduces agricultural sustainability by depleting the soil C pool.
  • Authors:
    • NASS
    • USDA
  • Year: 2009
  • Authors:
    • Scialabba, N.
    • Hepperly, P.
    • Fließbach, A.
    • Niggli, U.
  • Year: 2009
  • Authors:
    • Fortin, J.
    • Tremblay, G.
    • Ziadi, N.
    • Chantigny, M. H.
    • Rochette, P.
    • Angers, D. A.
    • Poirier, V.
  • Source: Soil Science Society of America Journal
  • Volume: 73
  • Issue: 1
  • Year: 2009
  • Summary: Both tillage and fertilizer management influence soil organic C (SOC) storage, but their interactive effects remain to be determined for various soil and climatic conditions. We evaluated the long-term effects of tillage (no-till, NT, and moldboard plowing, MP), and N and P fertilization on SOC stocks and concentrations in profiles of a clay loam soil (clayey, mixed, mesic Typic Humaquept). Corn (Zea mays L.) and soybean [Glycine max (L) Merr.] were grown in a yearly rotation for 14 yr. Our results showed that NT enhanced the SOC content in the soil surface layer, but MP resulted in greater SOC content near the bottom of the plow layer. When the entire soil profile (0-60 cm) was considered, both effects compensated each other, which resulted in statistically equivalent SOC stocks for both tillage practices. Nitrogen and P fertilization with MP increased the estimated crop C inputs to the soil but did not significantly influence SOC stocks in the whole soil profile. At the 0- to 20-cm depth, however, lower C stocks were measured in the plowed soil with the highest N fertilizer level than in any other treatment, which was probably caused by a greater decomposition of crop residues and soil organic matter. Conversely, the highest SOC stocks of the 0- to 20-cm soil layer were observed in the NT treatment with the highest N rates, reflecting a greater residue accumulation at the soil Surface. When accounting for the whole soil profile, the variations in surface SOC due to tillage and fertilizer interactions were masked by tillage-induced differences in the 20- to 30-cm soil layer.
  • Authors:
    • Bryant, R. B.
    • Schmidt, J. P.
    • Kleinman, P. J.
    • Dell, C. J.
    • Skinner, R. H.
    • Soder, K. J.
    • Rotz, C. A.
  • Source: Forage and grazinglands
  • Year: 2009
  • Summary: Incorporating managed rotational grazing into a dairy farm can result in an array of environmental consequences. A comprehensive assessment of the environmental impacts of four management scenarios was conducted by simulating a 250-acre dairy farm typical of Pennsylvania with: (i) a confinement fed herd producing 22,000 lbs of milk per cow per year; (ii) a confinement fed herd producing 18,500 lbs; (iii) a confinement fed herd with summer grazing producing 18,500 lbs; and (iv) a seasonal herd maintained outdoors producing 13,000 lbs. Converting 75 acres of cropland to perennial grassland reduced erosion 24% and sediment-bound and soluble P runoff by 23 and 11%, respectively. Conversion to all perennial grassland reduced erosion 87% with sediment-bound and soluble P lossess reduced to 80 and 23%. Ammonia volatilization was reduced 30% through grazing but nitrate leaching loss increased up to 65%. Grazing systems reduced the net greenhouse gas emission by 8 to 14% and the C footprint of an all grassland farm up to 80% during the transition from cropland. The environmental benefits of grass-fed dairy production should be used to encourage greater adoption of managed rotational grazing in regions where this technology is well adapted.
  • Authors:
    • Robertson, G. P.
    • Kravchenko, A. N.
    • Senthilkumar, S.
  • Source: Soil Science Society of America Journal
  • Volume: 73
  • Issue: 6
  • Year: 2009
  • Summary: Topography is one of the major factors affecting sod C and N contents at the field/landscape level. However, topographical effects are likely to differ in magnitude in different agricultural systems. The objective of this study was to examine the interactions between topography and management systems on Soil C and N. The study was conducted at the Kellogg Biological Station Long-Term Ecological Research (LTER) site in southwest Michigan. The studied treatments were chisel-plow (CT) and no-till (NT) with conventional chemical inputs and a chisel-plow organic management system with winter leguminous cover crops (CT-cover). At the 0- to 5-cm depth in both upperslope and valley positions total C and N contents of NT management were the highest followed by CT-cover and then CT At 0- to 15-, 20- to 30-, and 30- to 40-cm depths, treatment effects varied depending on the landscape position. There were no differences among the treatments in upperslopes, while in the valleys total C and N tended to be the highest in NT and CT-cover followed by CT. The results indicated the importance of accounting for interaction between topography and management practices when assessing C sequestration across landscapes with varying topography. Total C stocks at the 0- to 30-cm depths were around 35,32, and 27 MgC ha(-1) soil (+/- 2 MgC ha(-1) standard error) in CT-cover, NT and CT respectively, across upperslopes and valleys. Overall, CT-cover was found to be as efficient in maintaining C and N content as no-till with conventional chemical inputs. Power analysis for C and N stocks at the 0- to 40-cm depth revealed that because of high variability in total C and N stocks at greater depths, the 10 to 30 samples per treatment available in this study were inadequate to detect differences in C and N stocks if the differences were < 26 MgC ha(-1).
  • Authors:
    • Reicosky, D. C.
    • Baker, J. M.
    • Koskinen, W. C.
    • Spokas, K. A.
  • Source: Chemosphere
  • Volume: 77
  • Issue: 4
  • Year: 2009
  • Summary: A potential abatement to increasing levels of carbon dioxide (CO2) in the atmosphere is the use of pyrolysis to convert vegetative biomass into a more stable form of carbon (biochar) that could then be applied to the soil. However, the impacts of pyrolysis biochar on the soil system need to be assessed before initiating large scale biochar applications to agricultural fields. We compared CO2 respiration, nitrous oxide (N2O) production, methane (CH4) oxidation and herbicide retention and transformation through laboratory incubations at field capacity in a Minnesota soil (Waukegan silt loam) with and without added biochar. CO2 originating from the biochar needs to be subtracted from the soil-biochar combination in order to elucidate the impact of biochar on soil respiration. After this correction, biochar amendments reduced CO2 production for all amendment levels tested (2, 5, 10, 20, 40 and 60% w/w; corresponding to 24-720 t ha -1 field application rates). In addition, biochar additions suppressed N2O production at all levels. However, these reductions were only significant at biochar amendment levels >20% w/w. Biochar additions also significantly suppressed ambient CH4 oxidation at all levels compared to unamended soil. The addition of biochar (5% w/w) to soil increased the absorption of atrazine and acetochlor compared to non-amended soils, resulting in decreased dissipation rates of these herbicides. The recalcitrance of the biochar suggests that it could be a viable carbon sequestration strategy, and might provide substantial net greenhouse gas benefits if the reductions in N2O production are lasting.
  • Authors:
    • Reicosky, D. C.
    • Spokas, K. A.
  • Source: Annals of Environmental Science
  • Volume: 3
  • Year: 2009
  • Summary: One potential abatement strategy to increasing atmospheric levels of carbon dioxide (CO2) is to sequester atmospheric CO2 captured through photosynthesis in biomass and pyrolysed into a more stable form of carbon called biochar. We evaluated the impacts of 16 different biochars from different pyrolysis/gasification processes and feed stock materials (corn stover, peanut hulls, macadamia nut shells, wood chips, and turkey manure plus wood chips) as well as a steam activated coconut shell charcoal on net CO2, methane (CH4) and nitrous oxide (N2O) production/consumption potentials through a 100 day laboratory incubation with a Minnesota agricultural soil (Waukegan silt loam, total organic carbon = 2.6%); Wisconsin forest nursery soil (Vilas loamy sand, total organic carbon = 1.1%); and a California landfill cover soil (Marina loamy sand plus green waste-sewage sludge, total organic carbon = 3.9%) at field capacity (soil moisture potential = -33 kPa). After correcting for the CO2, CH4 and N2O production of the char alone, the addition of biochars (10% w/w) resulted in different responses among the soils. For the agricultural soil, five chars increased, three chars reduced and eight had no significant impact on the observed CO2 respiration. In the forest nursery soil, three chars stimulated CO2 respiration, while the remainder of the chars suppressed CO2 respiration. In the landfill cover soil, only two chars increased observed CO2 respiration, with the remainder exhibiting lower CO2 respiration rates. All chars and soil combinations resulted in decreased or unaltered rates of CH4 oxidation, with no increases observed in CH4 oxidation or production activity. Biochar additions generally suppressed observed N2O production, with the exception being high nitrogen compost-amended biochar, which increased N2O production. The general conclusions are: (1) the impact on trace gas production is both dependent on the biochar and soil properties and (2) biochar amendments initially reduce microbial activity in laboratory incubations. These preliminary results show a wide diversity in biochar properties that point to the need for more research.
  • Authors:
    • Christensen, B. T.
    • Jensen, L. S.
    • Bruun, S.
    • Thomsen, I. K.
  • Source: Soil Biology & Biochemistry
  • Volume: 41
  • Issue: 10
  • Year: 2009
  • Summary: The feasibility of near infrared (NIR) spectroscopy for quantifying labile organic matter (OM) in arable soils and for predicting soil refractory OM fractions was tested on 37 soils varying in texture and soil carbon (C) content. Three sets of arable soils (0-20 cm depth) were sampled from 1) long-term field experiments with different OM inputs, 2) individual sites with inherent with-in field gradients in soil texture and/or C content, and 3) from a range of different sites covering variations in management and geological origin. The labile OM fraction was defined by the CO2 evolved from the soils incubated for 34 weeks while refractory CM was obtained by NaOCl oxidation. The labile fraction of the soil C accounted for 2-12% of the total soil C content. No systematic relationship between labile C content and total soil C or clay was found, but NIR spectra could be correlated well with the labile C fraction. A distinct, close linear relationship was found for C in soil before and after the NaOCl oxidation, indicating that this method was unable to reveal any additional information not contained in the total soil C measurement. NIR was also correlated with the NaOCl resistant C fraction, but this was considered to relate to the ability of NIR to predict total soil C contents. Thus NIR seemed to have the potential to estimate labile OM determined under laboratory incubations, while it still remains open how to identify and quantify refractory pools of soil OM.
  • Authors:
    • Vigneault, P.
    • Belec, C.
    • Ma, B. L.
    • Wang, Z.
    • Tremblay, N.
  • Source: Precision Agriculture
  • Volume: 10
  • Issue: 2
  • Year: 2009
  • Summary: Abstract Nitrogen (N) fertilizer rates applied spatially according to crop requirements can improve the efficiency of N use. The study compares the performance of two commercial sensors, the Yara N-Sensor/FieldScan (Yara International ASA, Germany) and the GreenSeeker (NTech Industries Inc., Ukiah, California, USA), for assessing the status of N in spring wheat (Triticum aestivum L.) and corn (Zea mays L.). Four experiments were conducted at different locations in Quebec and Ontario, Canada. The normalized difference vegetation index (NDVI) was determined with the two sensors at specific growth stages. The NDVI values derived from Yara N-Sensor/FieldScan correlated with those from GreenSeeker, but only at the early growth stages, where the NDVI values varied from 0.2 to 0.6. Both sensors were capable of describing the N condition of the crop or variation in the stand, but each sensor had its own sensitivity characteristics. It follows that the algorithms developed with one sensor for variable-rate N application cannot be transferred directly to another sensor. The Yara N-Sensor/FieldScan views the crop at an oblique angle over the rows and detects more biomass per unit of soil surface compared to the Green- Seeker with its nadir (top-down) view of the crop. The Yara N-Sensor/FieldScan should be used before growth stage V5 for corn during the season if NDVI is used to derive crop N requirements. GreenSeeker performed well where NDVI values were [0.5. However, unlike GreenSeeker, the Yara N-Sensor/FieldScan can also record spectral information from wavebands other than red and near infrared, and more vegetation indices can be derived that might relate better to N status than NDVI.