- Authors:
- Yang, H. S.
- Amos, B.
- Burba, G. G.
- Suyker, A. E.
- Arkebauer, T. J.
- Knops, J. M.
- Walters, D. T.
- Cassman, K. G.
- Dobermann, A.
- Verma, S. B.
- Ginting, D.
- Hubbard, K. G.
- Gitelson, A. A.
- Walter-Shea, E. A.
- Source: Agricultural and Forest Meteorology
- Volume: 131
- Issue: 1-2
- Year: 2005
- Summary: Carbon dioxide exchange was quantified in maize ( Zea mays)-soybean ( Glycine max) agroecosystems employing year-round tower eddy covariance flux systems and measurements of soil C stocks, CO 2 fluxes from the soil surface, plant biomass, and litter decomposition. Measurements were made in 3 cropping systems: (a) irrigated continuous maize; (b) irrigated maize-soybean rotation; and (c) rainfed maize-soybean rotation during 2001-2004. The study was conducted at the University of Nebraska Agricultural Research and Development Centre near Mead, Nebraska, USA. Because of a variable cropping history, all 3 sites were uniformly tilled by disking prior to initiation of the study. Since then, all sites are under no-till, and crop and soil management follow best management practices prescribed for production-scale systems. Cumulative daily gain of C by the crops (from planting to physiological maturity), determined from the measured eddy covariance CO 2 fluxes and estimated heterotrophic respiration, compared well with the measured total above and belowground biomass. Two contrasting features of maize and soyabean CO 2 exchange are notable. The value of integrated gross primary productivity (GPP) for both irrigated and rainfed maize over the growing season was substantially larger (ca. 2:1 ratio) than that for soyabean. Also, soyabean lost a larger portion (0.80-0.85) of GPP as ecosystem respiration (due, in part, to the large amount of maize residue from the previous year), as compared to maize (0.55-0.65). Therefore, the seasonally integrated net ecosystem production (NEP) in maize was larger by a 4:1 ratio (approximately), as compared to soyabean. Enhanced soil moisture conditions in the irrigated maize and soyabean fields caused an increase in ecosystem respiration, thus eliminating any advantage of increased GPP and giving about the same values for the growing season NEP as the rainfed fields. On an annual basis, the NEP of irrigated continuous maize was 517, 424, and 381 g C m -2 year -1, respectively, during the 3 years of our study. In rainfed maize, the annual NEP was 510 and 397 g C m -2 year -1 in years 1 and 3, respectively. The annual NEP in the irrigated and rainfed soyabean fields were in the range of -18 to -48 g C m -2. Accounting for the grain C removed during harvest and the CO 2 released from irrigation water, our tower eddy covariance flux data over the first 3 years suggest that, at this time: (a) the rainfed maize-soybean rotation system is C neutral; (b) the irrigated continuous maize is nearly C neutral or a slight source of C; and (c) the irrigated maize-soybean rotation is a moderate source of C. Direct measurement of soil C stocks could not detect a statistically significant change in soil organic carbon during the first 3 years of no-till farming in these 3 cropping systems.
- Authors:
- Ding, H.
- Edis, R.
- Zhang, Y.
- Chen, D.
- Li, Y.
- Source: Global Biogeochemical Cycles
- Volume: 19
- Year: 2005
- Authors:
- Source: Soil Science Society of America Journal
- Volume: 69
- Issue: 3
- Year: 2005
- Summary: Field experiments were conducted to determine optimal time during the day for N 2O flux determination and to evaluate the effects of wheel traffic and soil parameters on N 2O fluxes following urea ammonium nitrate (UAN) injection and summer UAN fertigations. The experiments were located on silty clay loam soils under no-till irrigated continuous corn of eastern Nebraska. Three approaches were used. First, near-continuous N 2O flux measurements were made in non-wheel-tracked (NWT) interrows in four 24-h periods during the growing season of 2002. Second, point measurements of N 2O flux were made in the wheel-tracked (WT) and NWT interrows at five dates during the growing season of 2002. Third, point measurements of N 2O fluxes and soils (nitrate, ammonium, moisture, and temperature) were made in the NWT interrows from 2001 to 2004. The differences between point vs. continuous flux measurements (<8 g N 2O-N ha -1 d -1) and between the WT vs. the NWT (<3.7 g N 2O-N ha -1 d -1) were not significant. The means of N 2O daily flux within 60 d after injection (period of high soil N) in the first, second, and third year were 26.8, 21.2, and 28.0 g N 2O-N ha -1 d -1, respectively. The means during low soil N were 9.24, 4.05, and 7.50 g N 2O-N ha -1 d -1, respectively. Summer fertigations did not increase N 2O flux. Under the conditions of this study, optimal point measurement for N 2O daily flux can be made any time during the day at the NWT interrows. Among the soil parameters, soil nitrate dynamics in the injection zone correlates best with N 2O fluxes.
- Authors:
- Desjardins, R. L.
- Trzcinski, M. K.
- Pattey, E.
- Source: Nutrient Cycling in Agroecosystems
- Volume: 72
- Issue: 2
- Year: 2005
- Summary: Greenhouse gas emissions from the agricultural sector can be reduced through implementation of improved management practices. For example, the choice of manure storage method should be based on environmental decision criteria, as well as production capacity. In this study, greenhouse gas emissions from three methods of storing dairy and beef cattle manure were compared during the summer period. The emissions of CH4,N2O and CO2 from manure stored as slurry, stockpile, and compost were measured using a flow-through closed chamber. The largest combined N2O-CH4 emissions in CO2 equivalent were observed from the slurry storage, followed by the stockpile and lastly the passively aerated compost. This ranking was governed by CH4 emissions in relation to the degree of aerobic conditions within the manure. The radiative forcing in CO2 equivalent from the stockpiled manure was 1.46 times higher than from the compost for both types of cattle manure. It was almost twice as high from the dairy cattle manure slurry and four to seven times higher from the beef cattle manure slurry than from the compost. The potential reduction of GHG was estimated, by extrapolating the results of the study to all of Canada. By composting all the cattle manure stored as slurry and stockpile, a reduction of 0.70 Tg CO2-eq year-1 would be achieved. Similarly, by collecting and burning CH4 emissions from existing slurry facilities, a reduction of 0.76 Tg CO2-eq year-1 would be achieved. New CH4 emission factors were estimated based on these results and incorporated into the IPCC methodology. For North America under cool conditions, the CH4 emission factors would be 45 kg CH4 hd-1 year-1for dairy cattle manure rather than 36 kg CH4 hd-1 year-1, and 3kgCH4 hd-1 year-1 for beef cattle manure rather than 1 kg CH4 hd-1 year-1.
- Authors:
- Paustian,Keith
- Cole,C. Vernon
- Sauerbeck,Dieter
- Sampson,Neil
- Peairs,F. B.
- Bean,B.
- Gossen,B. D.
- Source: Agronomy Journal
- Volume: 97
- Issue: 2
- Year: 2005
- Summary: The intensification of traditional wheat (Triticum aestivum L.)-fallow production systems may have important consequences for management of insects, pathogens, and weeds in Great Plains dryland production systems. Assessment of these consequences is difficult due to the diversity of production systems, environmental conditions, and pests found in the region. Certain pest groups, such as weeds, traditionally controlled during the fallow period, may be favored by intensified cropping while others, such as those specializing on wheat, should be disadvantaged. Changes in pest and disease complexes will likely be evolutionary rather than revolutionary, as has been the case with other significant changes in production practices. Preventive practices in dryland production systems currently emphasize the control of grassy weeds while intensified systems may have less emphasis on the control of volunteer wheat. Crop rotation will remain a key avoidance strategy for pathogens and will help broaden herbicide options. Pest monitoring provides essential information on pest activity and environmental conditions and will become more complex as production systems are intensified. Important suppressive practices for dryland production systems include conservation biological control, tillage, and chemical controls. Chemical control, in particular, is expected to become more complicated due to drift concerns, rotational restrictions, the possible need for herbicide-tolerant crops, and the development of weed populations resistant to glyphosate. Pest management requirements should be considered during cropping system design and establishment.
- Authors:
- Pennock,D. J.
- Farrell,R.
- Desjardins,R. L.
- Pattey,E.
- MacPherson,J. I.
- Source: Canadian Journal of Soil Science
- Volume: 85
- Issue: 1
- Year: 2005
- Summary: One impediment to accurate national estimation of N2O is the difficulty in upscaling N2O measurements made at discrete points to larger field and regional scales. Our objective was to estimate N2O emissions during snowmelt in 2002 for a township (approximately 92 km2) near Laird, Saskatchewan. Chamber measurements were made at 12 sites in the township: four fields with canola (Brassica napus L.) residues, four with pea (Pisum sativum L.) residues, three with wheat (Triticum aestivum L.) residues, and one field that received cattle manure. Ten sampling chambers were used at each site, and N2O samples were made on 7 d during the snowmelt period (from 2002 Apr. 03 to Apr. 17). Cumulative N2O emissions during the 14 days of the snowmelt period differed between crop residue types: cumulative emissions from sites with wheat residues were 105.6 g N2O-N ha-1 and were significantly higher (P < 0.1) than those from fields with pea and canola residues (79.6 and 75.2 g N2O-N ha-1 respectively). The single manured site assessed had the highest cumulative emissions of 330.7 g N2O-N ha-1. The crop-specific emissions from the chamber-based measurements were multiplied by the area of each crop type in the township to calculate an area-weighted value for emissions. Cumulative emissions were 93.4 g N2O-N ha-1 for the chamber-based measurements. Water-filled pore space and soil temperature were not significantly correlated with cumulative emissions. Cumulative emissions from sites with fall nitrate levels below 8.0 kg ha-1 were consistently lower than those above this threshold. The emissions for the Laird township were well below the emissions calculated for most other studies in the Prairies and in central Canada. The lower emissions were probably due to low soil water contents and soil nitrate levels in the fall of 2001 and below normal snowfall in the winter of 2001–2002. This reinforces the importance in antecedent moisture conditions and soil N levels for modeling of emissions at snowmelt.
- Authors:
- Source: Soil & Tillage Research
- Volume: 80
- Issue: 1-2
- Year: 2005
- Summary: Minimum tillage practices are known for increasing soil organic carbon (SOC). However, not all environmental situations may manifest this potential change. The SOC and N stocks were assessed on a Mollisol in central Ohio in an 8-year-old tillage experiment as well as under two relatively undisturbed land uses; a secondary forest and a pasture, on the same soil type. Cropped systems had 51 +/- 4 (equiv. mass) Mg ha(-1) lower SOC and lower 3.5 +/- 0.3 (equiv. mass)Mg ha(-1) N in the top 30cm soil layer than Linder forest. Being a secondary forest, the loss in SOC and N stocks by cultivation may have been even more than these reported herein. No differences among systems were detected below this depth. The SOC stock in the pasture treatment was 29 +/- 3 Mg ha(-1), greater in the top 10 cm layer than in cultivated soils. but was similar to those tinder forest and no-till (NT). Among tillage practices (plow, chisel and NT) only the 0-5 cm soil layer under NT exhibited higher SOC and N concentrations. An analysis of the literature of NT effect on SOC stocks. using meta-analysis, suggested that NT would have an overall positive effect on SOC sequestration rate but with a greater variability of what was previously reported. The average sequestration rate of NT was 330 kg SOC ha(-1) year(-1) with a 95%, confidence interval ranging from 47 to 620 kg SOC ha(-1) year(-1). There was no effect of soil texture or crop rotation on the SOC sequestration rate that could year explain this variability. The conversion factor for SOC stock changes from plow to NT was equal to 1.04. This suggests that the complex mechanisms and pathways of SOC accrual warrant a cautious approach when generalizing the beneficial changes of NT on SOC stocks. (C) 2004 Elsevier B.V. All rights reserved.
- Authors:
- Mallarino, A. P.
- Parkin, T. B.
- Laird, D. A.
- Russell, A. E.
- Source: Soil Science Society of America Journal
- Volume: 69
- Issue: 2
- Year: 2005
- Summary: Growing interest in the potential for agricultural soils to provide a sink for atmospheric C has prompted studies of effects of management on soil organic carbon (SOC) sequestration. We analyzed the impact on SOC of four N fertilization rates (0-270 kg N ha-1) and four cropping systems: continuous corn (CC) (Zea mays L.); corn-soybean [Glycine max (L.) Merr.] (CS); corn-corn-oat-alfalfa (oat, Avena sativa L.; alfalfa, Medicago sativa L.) (CCOA), and corn-oat-alfalfa-alfalfa (COAA). Soils were sampled in 2002, Years 23 and 48 of the experiments located in northeast and north-central Iowa, respectively. The experiments were conducted using a replicated split-plot design under conventional tillage. A native prairie was sampled to provide a reference (for one site only). Cropping systems that contained alfalfa had the highest SOC stocks, whereas the CS system generally had the lowest SOC stocks. Concentrations of SOC increased significantly between 1990 and 2002 in only two of the nine systems for which historical data were available, the fertilized CC and COAA systems at one site. Soil quality indices such as particulate organic carbon (POC) were influenced by cropping system, with CS < CC < CCOA. In the native prairie, SOC, POC, and resistant C concentrations were 2.8, 2.6, and 3.9 times, respectively, the highest values in cropped soil, indicating that cultivated soils had not recovered to precultivation conditions. Although corn yields increased with N additions, N fertilization increased SOC stocks only in the CC system at one site. Considering the C cost for N fertilizer production, N fertilization generally had a net negative effect on C sequestration.
- Authors:
- Abrahamson, L. P.
- White, E. H.
- Cameron, K. C.
- Phillips, I. S.
- Kopp, R. F.
- Lin, J.
- Volk, T. A.
- Smart, L. B.
- Source: Unasylva
- Volume: 221
- Issue: 56
- Year: 2005
- Summary: A willow breeding programme focuses on improving growth, optimizing relevant traits and lowering production costs to ensure the long-term viability of willow crop systems for producing energy, restoring degraded sites and improving water quality.
- Authors:
- O'Neil, K.
- Nyiraneza ,J.
- Leep, R.
- Black, J. R.
- Mutch, D.
- Labarta, R.
- Swinton, S. M.
- Snapp, S. S.
- Source: Agronomy Journal
- Volume: 97
- Issue: 1
- Year: 2005
- Summary: The integration of cover crops into cropping systems brings costs and benefits, both internal and external to the farm. Benefits include promoting pest-suppression, soil and water quality, nutrient cycling efficiency, and cash crop productivity. Costs of adopting cover crops include increased direct costs, potentially reduced income if cover crops interfere with other attractive crops, slow soil warming, difficulties in predicting N mineralization, and production expenses. Cover crop benefits tend to be higher in irrigated systems. The literature is reviewed here along with Michigan farmer experience to evaluate promising cover crop species for four niches.