- Authors:
- Bastiaanssen, W. G. M.
- Cheema, M. J. M.
- Source: Agricultural Water Management
- Volume: 97
- Issue: 10
- Year: 2010
- Summary: Water resources planning and management is fundamental for food security, environmental conservation, economic development and livelihoods. In complex basins like the Indus Basin, water is utilized by different land cover and land uses. Up to date information about these Land Use and Land Cover (LULC) classes provide essential information on the water flow path. Traditionally, landscapes are described by cover type. For water management analysis, the information on land use is vital. To this end, a classification of LULC in the Indus Basin (covering 116.2 million hectares of Pakistan, India, China and Afghanistan) has been made. Vegetation index images freely available from SPOT-Vegetation satellite were used to describe the phenological cycle of all agro-ecosystems at a spatial resolution of 1 km x 1 km. An unsupervised clustering technique was adapted to classify 27 land use classes. Ground information and expert knowledge on the growing patterns of crops was used to label the resulting LULC classes. This helped to discern specific crops and crop rotations. An error matrix was prepared using ground truthing data to evaluate the classification accuracy. Existing global, regional and local studies were also considered for validation. The results show an overall accuracy of 77%, with the producer's accuracy being 78% and user's accuracy 83%. The Kappa coefficient (0.73) shows moderate agreement between on ground and satellite derived map. This is deemed sufficient for supporting water management analysis. The availability of major crop rotation statistics and types of forests and savanna is key information for the input data in hydrological models and water accounting frameworks. (C) 2010 Elsevier B.V. All rights reserved.
- Authors:
- Shimi, P.
- Fereidoonpoor, M.
- Jamali, M.
- Source: Proceedings of 3rd Iranian Weed Science Congress, Volume 2: Key papers, weed management and herbicides, Babolsar, Iran, 17-18 February 2010
- Year: 2010
- Summary: In order to compare efficacy of Pantera (quizalofop-P-tefuryl 4%EC) with other graminicides in canola fields of Fars province, an experiment was carried out in randomized complete block design with 4 replication and 11 treatments in Darab research station in 2008-2009. Treatments included Pantera at 1, 1.5 and 2 lha -1, Galant super (haloxyfop-R-methyl aster) at 0.75 lha -1, Focus (cycloxydim) at 2 lha -1, Treflan, (trifluralin 48% EC) at 2 lha -1, Butisan star (metazachlor 33.33%+quinmerac 8.8%) at 2.5 lha -1, Treflan at 2 lha -1+Pantera at 1.5 lha -1, Treflan at 2 lha -1+Galant super at 0.75 lha -1, Treflan at 2 lha -1+Focus 2 lha -1 and full season weed control as check. Results showed that 2 lha -1 Pantera in compare with Treflan+other graminicides as super gallant, focus and Pantera and full season weed control treatment had no significant difference and increased canola yield by 39.5-41.7%. Also, 2 lha -1 Pantera controlled wheat, barley, wild oat and ryegrass. In 100, 100, 90.97 and 92.92 percent respectively and 75.4 percent in decreasing of dry weight of grasses.
- Authors:
- Evans, A.
- Blummel, M.
- Noble, A. D.
- Ahmad, W.
- Simmons, R. W.
- Weckenbrock, P.
- Source: Irrigation and Drainage Systems
- Volume: 24
- Issue: 1-2
- Year: 2010
- Summary: In 2006 a comprehensive sampling program was undertaken in two pre-selected peri-urban villages in Faisalabad, Pakistan to evaluate the soil and agronomic impacts of long-term (25-30 years) untreated wastewater re-use on wheat grain and straw yields and attributes of wheat straw fodder quality. Soil SAR, ESP, RSC and ECe were 63%, 37%, 31%, and 50% higher under wastewater (WW) as compared with canal water (CW) irrigated plots. Further, 2.7 and 6.65 fold increases in soil NO 3-+NO 2--N and Olsen-P were observed in WW as compared with CW irrigated plots. However, no significant differences in grain yield, wheat straw biomass, or fodder quality attributes were observed between WW and CW irrigated plots. In addition, for both CW and WW irrigated plots wheat straw, Cd and Pb concentrations were orders of magnitude below the EC Maximum permissible levels for Pb and Cd in feed materials and thus pose no threat to the fodder-livestock food chain. Further, elevated soil N associated with WW irrigated plots has a significant ( p
- Authors:
- Hameed, M
- Afzal, M
- Rana, S. A.
- Ruby, T.
- Source: International Journal of Agriculture & Biology
- Volume: 12
- Issue: 6
- Year: 2010
- Summary: Arthropods are the most integral part of an agro-ecosystem, but the crop intensification practices are badly affecting these key components. Studies pertaining to biodiversity of arthropods in the cropland of two zones i.e., mixed crop zone (Faisalabad) and Cotton-Wheat zone (Multan) Punjab, Pakistan were conducted for a period of one year. The main focus was to collect, identify and compare the species richness and evenness. Sugarcane, Fodder, Wheat and Brassica were sampled round the year showed variations in species composition of their fauna in the two districts representing the two zones. Mixed-crop zone was highly diversified with respect to species and abundance of individuals per species. On the whole order Orthoptera was dominant followed by Araneae, Hemiptera, Coleoptera, Lepidoptera, Hymenoptera, Odonata, Diptera and Thysanoptera, Neuroptera, Prostigmata each represented by single species except Mantodea with two species. This data base will be helpful in future ecological pest management strategies. The mixed-crop zone was found better than cotton-wheat zone with respect to faunal diversity that may be functional in keeping the sustainability of agro-ecosystem intact.
- Authors:
- Neffati, M.
- Belgacem, A. O.
- Visser, M.
- Source: Grass and Forage Science
- Volume: 65
- Issue: 1
- Year: 2010
- Summary: When grass species are used to reseed depleted drylands, grazing is often prescribed during the establishment phase. Total protection from grazing often leads to the presence of persistent weed species and is hard to accept by land users keen to graze reseeded land as soon as possible. The particular case of reseeding arid Mediterranean cereal fallows with one native grass species, Stipa lagascae (Stipa), in Tunisia was tested. Seedlings, derived from two different seed sources (selected and bulk), and volunteer annual weed species underwent four different cutting treatments to ground level (early cut, late cut, early and late cuts and no cuts). No effect of any of the treatments on seedling survival or dry matter mass of Stipa seedlings was found. It was concluded that Stipa seedlings are indifferent to the presence of annual weed species and can tolerate more than one cut during the year of establishment. In the context of the study, early grazing of reseeded fallows is worth investigating further.
- Authors:
- Song, W. X.
- Zhao, W. Z.
- Shi, S. L.
- Zhang, E. H.
- Zhao, L.
- Li, F. R.
- Wang, Q.
- Vance, M. M.
- Source: Plant and Soil
- Volume: 337
- Issue: 1/2
- Year: 2010
- Summary: Monitoring of drinking water has shown an increase in nitrate-nitrogen (NO 3--N) concentration in groundwater in some areas of the Heihe River Basin, Northwest China. A combination of careful irrigation and nitrogen (N) management is needed to improve N uptake efficiency and to minimize fertilizer N loss. A 2-year experiment investigated the effects of different irrigation and N application rates on soil NO 3--N distribution and fertilizer N loss, wheat grain yield and N uptake on recently reclaimed sandy farmland. The experiment followed a completely randomized split-plot design, taking flood irrigation (0.6, 0.8 and 1.0 of the estimated evapotranspiration) as main plot treatment and N-supply as split-plot treatment (with five levels of 0, 79, 140, 221, 300 kgN ha -1). Fertilizer N loss was calculated according to N balance equation. Our results showed that, under deficit irrigation conditions, N fertilizer application at a rate of 300 kgha -1 promoted NO 3--N concentration in 0-200 cm depth soil profiles, and treatments with 221 kgN ha -1 also increased soil NO 3--N concentrations only in the surface layers. Fertilizer N rates of 70 and 140 kgha -1 did not increase NO 3--N concentration in the 0-200 cm soil profile remaining after the spring wheat growing season. The amount of residual NO 3--N in soil profiles decreased with the amount of irrigation. Compared with N 0, the increases of fertilizer N loss, in N 79, N 140, N 221 and N 300 respectively, were 59.9, 104.6, 143.5 and 210.6 kgha -1 over 2 years. Under these experimental conditions, a N rate of 221 kgha -1 obtained the highest values of grain yield (2775 kgha -1), above-ground dry matter (5310 kgha -1) and plant N uptake (103.8 kgha -1) over 2 years. The results clearly showed that the relative high grain yield and irrigation water productivity, and relative low N loss were achieved with application of 221 kgN ha -1 and low irrigation, the recommendation should be for those farmers who use the upper range of the recommended 150-400 kgN ha -1, that they can save about 45% of their N and 40% of their irrigation water application.
- Authors:
- Asgharipour, M.
- Rafiei, M.
- Source: American-Eurasian Journal of Agriculture & Environmental Science
- Volume: 9
- Issue: 1
- Year: 2010
- Summary: In search for sustainable agricultural methods for medicinal plants, a field experiment was conducted on isabgol-lentil mono and row intercropping, along with irrigation interval regimes (4-, 7- and 14-days irrigation interval) at the agricultural experimental farm of Zabol University during 2009. The experiment design was split-plot randomized complete block design with four replicates. Main plot treatments were giving irrigation at 4-, 7- and 14-days interval, and subplot treatments consisted of (a) sole isabgol; (b) sole lentil; (c) 1:1 isabgol-lentil intercropping system; (d) 1:3 isabgol-lentil intercropping system; and (e) 3:1 isabgol-lentil intercropping system. The results of the experiment confirmed that drought induced by increasing irrigation interval significantly decreased the growth of both crops and total N concentration of isabgol plants. Results also showed that lentil suppressed biological and grain yield of intercropped isabgol, but the reduction in isabgol yield was compensated by lentil grain yield. Isabgol biological and grain yield was significantly different across cropping systems and the yields were as follows: sole isabgol (281), 1:3 isabgol-lentil (93), 1:1 isabgol-lentil (191), and 3:1 isabgol-lentil (230). Lentil biological and grain yields was also significantly different across the treatments and was sole lentil (1096), 1:3 isabgol-lentil (846), 1:1 isabgol-lentil (644), and 3:1 isabgol-lentil (318). Intercropping isabgol and lentil increased the productivity with LER of 1.10, 1.27 and 1.11 for 1:3 isabgol-lentil, 1:1 isabgol-lentil and 3:1 isabgol-lentil, respectively. In intercrops a significant reduction in LAI, CGR, and also significant increase in leaf and tiller number per plant, plant height, spike length, spike number per plant, grain number per spike and 1000-grain weight of isabgol was observed over sole isabgol. These changes were proportional with row number of isabgol in intercropping. Significant interaction effect of cropping system by irrigation regimes on many cases of measured parameters showed intercropping protects plants from drought. Total concentration of N in isabgol were increased by intercropping, however cropping system by irrigation regimes interaction on N concentratation was not significant. These findings suggest that intercropping isabgol-lentil at combination of 1:1 with 7-days irrigation interval may be recommended for yield advantage, more efficient utilization of resources and N concentration on hot and dry regions of South-East Iran.
- Authors:
- Abrol, V.
- Singh, J. P.
- Hussain, S. Z.
- Source: AMA-Agricultural Mechanization in Asia, Africa and Latin America
- Volume: 40
- Issue: 1
- Year: 2009
- Summary: Tillage is a major farm operation that consumes time, energy and expense. Dryland cultivation practices need to minimize cost of production in all crops. An experiment has been conducted on two tillage systems: (1) conventional and (2) reduced tillage, to save energy in production of maize and wheat in Jammu, India. Three tillage treatments in combination with three fertilizer treatments were used. The highest yield of maize was 20.50 q/ha with conventional tillage + interculture. The next highest yield for maize was 20.16 q/ha with 50% conventional tillage + weedicide + interculture. The highest yield of wheat was 29.33 q/ha with 50% conventional tillage + weedicide + interculture. The next highest yield of wheat was 27.87 q/ha with conventional tillage + interculture. The fertilizer treatment showed the highest average grain yield of maize of 21.90 q/ha with 100% N with inorganic fertilizer. The next highest fertilized treatment with maize was with 50% N through organic + 50% N through inorganic fertilizers for a yield of 19.85 q/ha. A similar trend was found for wheat with the highest average grain yield of 29.00 q/ha with 100% N through inorganic fertilizer. The next highest fertilized treatment with wheat was with 50% N through organic + 50% N through inorganic fertilizers with a grain yield of 28.25 q/ha. The operational energy and cost of operation were higher in the conventional tillage system (5013.8 MJ, Rs. 10 574 and 2907.53 MJ, Rs.11 347.33) than in reduce tillage (3625.39 MJ, Rs.9750 and 2227.20 MJ, Rs.10 335.30) and the benefit cost ratio ranged from 1.52: 1 to 0.36: 1 and 1.08: 1 to 1.41: 1 in production of maize and wheat, respectively.
- Authors:
- Source: Agricultural Information Research
- Volume: 18
- Issue: 2
- Year: 2009
- Summary: In the arid areas of Northwest China, agriculture especially crop farming consumes most of water resource. Water-intensive and low value-added wheat is cultivated as a staple food of the local people in large scale. Because of the surface water scarcity, irrigation mainly depends on pumping the groundwater in these areas. Based on field surveys conducted in 2005 and 2006 both in the south and the north of Minqin County, Gansu province, this study is designed to study the role of groundwater irrigation on wheat production and how to improve the technical efficiencies (TEs) of wheat farmers by estimating a Stochastic Frontier Production Function (SFPF). The above information is valuable for how to save wheat water consumption and improving the food safety in the arid areas. The empirical results showed that expenditure on pumping groundwater played important role in wheat production. Meanwhile, the same expenditure played more effectively on wheat intercropping with maize in the south than that in the north. As a result, the farmers in the south are more likely to increase expenditures on pumping water than the farmers in the north. Therefore, the government should make new program to restrict wheat water consumption and to secure the farmers in both areas to use the groundwater fairly. Meanwhile, it is suggested that younger farmers can achieve a higher TE both in the south and the north. For the input-intensive intercropping in the south, a larger family, higher education of the farm managers, and coordination of their part-time jobs with agricultural production activities can also help to get higher TEs.
- Authors:
- Hill, J.
- Jacobs, J. L.
- Jenkin, T.
- Source: Animal Production Science
- Volume: 49
- Issue: 7
- Year: 2009
- Summary: The efficient production and subsequent utilisation of home-grown forage is seen as the cornerstone of profitability of the dairy industry as it leads to lower unit costs of milk production compared with purchased forage or grain supplements. Cereals such as wheat ( Triticum aestivum L.), oats ( Avena sativa L.) and triticale ( Triticum * Triticosecale) all have the potential to produce high forage dry matter (DM) yields. These forages are not widely grown within dryland Australian dairy systems and there is a paucity of information on both the agronomic requirements and subsequent ensiling and feed-out management under these conditions. The experiment reported in this paper examines the DM yield, nutritive and ensiling characteristics of three small-grain cereals (triticale, wheat and oats) cut at various stages of development and ensiled with or without silage additives. We hypothesised that: (1) delaying harvesting until later stages of growth would result in higher DM yields, but negatively impact on both nutritive and fermentation characteristics of subsequent silages; (2) ensiling wilted material at earlier harvests would improve fermentation characteristics compared with direct ensiled material; and (3) the use of silage additives at all harvests would improve fermentation characteristics of resultant silages compared with untreated silages. Apart from winter oats, the estimated metabolisable energy of forages was highest at the boot stage of growth, declined during anthesis and then rose again during milk and soft-dough stage of growth. The crude protein content of forages declined with maturity, with final values at soft dough below 90 g/kg DM. Neutral detergent fibre content was highest at anthesis and then declined, with lowest values observed at soft dough (497-555 g/kg DM). In the majority of cases silages were well preserved, with direct ensiled material having pH values generally below 4.5 and wilted material below 5.0, with limited proteolysis as assessed by ammonia-N contents in the range of 5-15% of total-N. The production of volatile fatty acids and lactic acid was influenced by wilting and the use of additives. Generally, wilted silages fermented less than the corresponding direct ensiled forages, whereas the use of Sil-All 4*4 additive resulted in a lactic acid-dominant fermentation compared with LaSil additive, which resulted in a greater proportion of acetic acid as an end product of fermentation. The findings of the present study highlight the potential of forage cereals to produce high DM yields for whole crop cereal silage. The timing of harvest directly influences nutritive characteristics of forages for ensiling. The use of silage additives can assist in controlling fermentation pathways during ensilage, ensuring the production of silages with fermentation attributes more likely to lead to higher intakes when fed to animals.