• Authors:
    • Yang, Z.
    • Chen, D.
    • Li, M.
    • Liang, W.
    • Wang, K.
    • Wang, Y.
    • Han, S.
    • Zhou, Z.
    • Zheng, X.
    • Liu, C.
  • Source: Plant and Soil
  • Volume: 332
  • Issue: 1-2
  • Year: 2010
  • Summary: Cotton is one of the major crops worldwide and delivers fibers to textile industries across the globe. Its cultivation requires high nitrogen (N) input and additionally irrigation, and the combination of both has the potential to trigger high emissions of nitrous oxide (N2O) and nitric oxide (NO), thereby contributing to rising levels of greenhouse gases in the atmosphere. Using an automated static chamber measuring system, we monitored in high temporal resolution N2O and NO fluxes in an irrigated cotton field in Northern China, between January 1st and December 31st 2008. Mean daily fluxes varied between 5.8 to 373.0 µg N2O-N m-2 h-1 and -3.7 to 135.7 µg NO-N m-2 h-1, corresponding to an annual emission of 2.6 and 0.8 kg N ha-1 yr-1 for N2O and NO, respectively. The highest emissions of both gases were observed directly after the N fertilization and lasted approximately 1 month. During this time period, the emission was 0.85 and 0.22 kg N ha-1 for N2O and NO, respectively, and was responsible for 32.3% and 29.0% of the annual total N2O and NO loss. Soil temperature, moisture and mineral N content significantly affected the emissions of both gases (p<0.01). Direct emission factors were estimated to be 0.95% (N2O) and 0.24% (NO). We also analyzed the effects of sampling time and frequency on the estimations of annual cumulative N2O and NO emissions and found that low frequency measurements produced annual estimates which differed widely from those that were based on continuous measurements.
  • Authors:
    • Sun, O. J.
    • Wang, E.
    • Luo, Z.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 139
  • Issue: 1-2
  • Year: 2010
  • Summary: Adopting no-tillage in agro-ecosystems has been widely recommended as a means of enhancing carbon (C) sequestration in soils. However, study results are inconsistent and varying from significant increase to significant decrease. It is unclear whether this variability is caused by environmental, or management factors or by sampling errors and analysis methodology. Using meta-analysis, we assessed the response of soil organic carbon (SOC) to conversion of management practice from conventional tillage (CT) to no-tillage (NT) based on global data from 69 paired-experiments, where soil sampling extended deeper than 40 cm. We found that cultivation of natural soils for more than 5 years, on average, resulted in soil C loss of more than 20 t ha-1, with no significant difference between CT and NT. Conversion from CT to NT changed distribution of C in the soil profile significantly, but did not increase the total SOC except in double cropping systems. After adopting NT, soil C increased by 3.15 +- 2.42 t ha-1 (mean ± 95% confidence interval) in the surface 10 cm of soil, but declined by 3.30 ± 1.61 t ha-1 in the 20-40 cm soil layer. Overall, adopting NT did not enhance soil total C stock down to 40 cm. Increased number of crop species in rotation resulted in less C accumulation in the surface soil and greater C loss in deeper layer. Increased crop frequency seemed to have the opposite effect and significantly increased soil C by 11% in the 0-60 cm soil. Neither mean annual temperature and mean annual rainfall nor nitrogen fertilization and duration of adopting NT affected the response of soil C stock to the adoption of NT. Our results highlight that the role of adopting NT in sequestrating C is greatly regulated by cropping systems. Increasing cropping frequency might be a more efficient strategy to sequester C in agro-ecosystems. More information on the effects of increasing crop species and frequency on soil C input and decomposition processes is needed to further our understanding on the potential ability of C sequestration in agricultural soils.
  • Authors:
    • MDEQ
    • Midwestern GHG Reduction Accord
  • Volume: 2010
  • Year: 2010
  • Summary: The Midwest Greenhouse Gas Reduction Accord (MGGRA) was a commitment by the governors of six Midwestern states and the premier of one Canadian province to reduce greenhouse gas (GHG) emissions through a regional cap-and-trade program and other complementary policy measures. The Accord was signed in November 2007 as a part of the Midwestern Governors Association Energy Security and Climate Change Summit. Though MGGRA has not been formally suspended, participating states are no longer pursuing it.
  • Authors:
    • Hoben, J. P.
    • Gehl, R. J.
    • Grace, P. R.
    • Robertson, G. P.
    • Millar, N.
  • Source: Mitigation and Adaptation Strategies for Global Change
  • Volume: 15
  • Issue: 2
  • Year: 2010
  • Summary: Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy--a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.
  • Authors:
    • Grace, P. R.
    • Robertson, G. P.
    • Millar, N.
    • Colunga-Garcia, M.
    • Basso, B.
    • Gage, S. H.
    • Hoben, J. P.
  • Source: Agricultural Systems
  • Volume: 104
  • Issue: 3
  • Year: 2010
  • Summary: Agricultural soils emit about 50% of the global flux of N2O attributable to human influence, mostly in response to nitrogen fertilizer use. Recent evidence that the relationship between N2O fluxes and N-fertilizer additions to cereal maize are non-linear provides an opportunity to estimate regional N2O fluxes based on estimates of N application rates rather than as a simple percentage of N inputs as used by the Intergovernmental Panel on Climate Change (IPCC). We combined a simple empirical model of N2O production with the SOCRATES soil carbon dynamics model to estimate N2O and other sources of Global Warming Potential (GWP) from cereal maize across 19,000 cropland polygons in the North Central Region (NCR) of the US over the period 1964-2005. Results indicate that the loading of greenhouse gases to the atmosphere from cereal maize production in the NCR was 1.7 Gt CO2e, with an average 268 t CO2e produced per tonne of grain. From 1970 until 2005, GHG emissions per unit product declined on average by 2.8 t CO2e ha-1 annum-1, coinciding with a stabilisation in N application rate and consistent increases in grain yield from the mid-1970s. Nitrous oxide production from N fertilizer inputs represented 59% of these emissions, soil C decline (0-30 cm) represented 11% of total emissions, with the remaining 30% (517 Mt) from the combustion of fuel associated with farm operations. Of the 126 Mt of N fertilizer applied to cereal maize from 1964 to 2005, we estimate that 2.2 Mt N was emitted as N2O when using a non-linear response model, equivalent to 1.75% of the applied N.
  • Authors:
    • Robertson, G. P.
    • Grace, P. R.
    • Millar, N.
    • Gehl, R. J.
    • Hoben, J. P.
  • Source: Global Change Biology
  • Volume: 17
  • Year: 2010
  • Summary: Row-crop agriculture is a major source of nitrous oxide (N2O) globally, and results from recent field experiments suggest that significant decreases in N2O emissions may be possible by decreasing nitrogen (N) fertilizer inputs without affecting economic return from grain yield. We tested this hypothesis on five commercially farmed fields in Michigan, USA planted with corn in 2007 and 2008.
  • Authors:
    • Kohei, U.
    • Ebel, R.
    • Horowitz, J.
  • Source: Economic Information Bulletin
  • Volume: 70
  • Year: 2010
  • Summary: Most U.S. farmers prepare their soil for seeding and weed and pest control through tillage-plowing operations that disturb the soil. Tillage practices affect soil carbon, water pollution, and farmers' energy and pesticide use, and therefore data on tillage can be valuable for understanding the practice's role in reaching climate and other environmental goals. In order to help policymakers and other interested parties better understand U.S. tillage practices and, especially, those practices' potential contribution to climate-change efforts, ERS researchers compiled data from the Agricultural Resource Management Survey and the National Resources Inventory-Conservation Effects Assessment Project's Cropland Survey. The data show that approximately 35.5 percent of U.S. cropland planted to eight major crops, or 88 million acres, had no tillage operations in 2009.
  • Authors:
    • Song, C. C.
    • Su, Y. H.
    • Yu, Y. Q.
    • Zhang, W.
    • Sun, W. J.
    • Huang, Y.
  • Source: Global Change Biology
  • Volume: 16
  • Issue: 2
  • Year: 2010
  • Summary: It has been well recognized that converting wetlands to cropland results in loss of soil organic carbon (SOC), while less attention was paid to concomitant changes in methane (CH4) and nitrous oxide (N2O) emissions. Using datasets from the literature and field measurements, we investigated loss of SOC and emissions of CH4 and N2O due to marshland conversion in northeast China. Analysis of the documented crop cultivation area indicated that 2.91 Mha of marshland were converted to cropland over the period 1950-2000. Marshland conversion resulted in SOC loss of similar to 240 Tg and introduced similar to 1.4 Tg CH4 and similar to 138 Gg N2O emissions in the cropland, while CH4 emissions reduced greatly in the marshland, cumulatively similar to 28 Tg over the 50 years. Taking into account the loss of SOC and emissions of CH4 and N2O, the global warming potential (GWP) at a 20-year time horizon was estimated to be similar to 180 Tg CO2_eq. yr-1 in the 1950s and similar to 120 Tg CO2_eq. yr-1 in the 1990s, with a similar to 33% reduction. When calculated at 100-year time horizon, the GWP was similar to 73 Tg CO2 _eq. yr-1 in the 1950s and similar to 58 Tg CO2_eq. yr-1 in the 1990s, with a similar to 21% reduction. It was concluded that marshland conversion to cropland in northeast China reduced the greenhouse effect as far as GWP is concerned. This reduction was attributed to a substantial decrease in CH4 emissions from the marshland. An extended inference is that the declining growth rate of atmospheric CH4 since the 1980s might be related to global loss of wetlands, but this connection needs to be confirmed.
  • Authors:
    • Sohngen, B.
    • Choi, S. W.
  • Source: Climatic Change
  • Volume: 99
  • Issue: 1-2
  • Year: 2010
  • Summary: This study investigates the cost of soil carbon sequestration in the Midwest US. The model addresses several missing components in earlier analyses: the link between the residue level choice and carbon payments, crop rotations, carbon loss when shifting from conservation to conventional tillage and the spatial pattern of carbon sequestration across different soil types. The results suggest that for $100 per metric ton of carbon, 1.5 million metric tons of carbon could be sequestered per year on the 19.9 million hectares of cropland in the study region. These estimates suggest less carbon potential than existing studies because the opportunity costs associated with conservation tillage are fairly high. Annual carbon rental payments are found to be more efficient, as expected, but for smaller programs, per hectare rental payments are not substantially more costly.
  • Authors:
    • Pedersen, P.
    • Janssen, M. R.
    • Nafziger, E. D.
    • Coulter, J. A.
  • Source: Agronomy Journal
  • Volume: 102
  • Issue: 1
  • Year: 2010
  • Summary: Transgenic Bt corn hybrids with resistance to corn rootworm or European corn borer can have greater tolerance to water and nutrient stress, and thus may have higher optimum plant densities. Experiments were conducted following soybean over nine site-years in Illinois to determine whether the response to plant density for corn grain yield and net return to seed cost differ among near-isoline hybrids with no insect resistance, Bt resistance to CRW, or Bt resistance to CRW plus ECB. Similar experiments were conducted over three site-years in Iowa following both soybean and corn for near-isoline hybrids with Bt resistance to ECB or ECB plus CRW. Larval CRW injury was low in Iowa and stalk lodging was minimal in all experiments. Across site-years in Illinois and in both crop sequences in Iowa, grain yield and net return to seed cost were not af ected by hybrid. Net return to seed cost within $2.50 ha-1 of the maximum occurred with densities of 76,300 to >98,600 plants following soybean in Illinois, 87,100 to 93,400 plants following soybean in Iowa, and 87,400 to 95,700 plants following corn in Iowa. Yields within these optimum plant densities were 15.9, 16.1, and 15.4 Mg ha-1, respectively. When CRW and ECB are managed or are at low levels, optimum plant density is similar between hybrids with or without resistance to these pests.