• Authors:
    • Mamo, M.
    • Drijber, R.
    • Quincke, J.
    • Wortmann, C.
    • Franti, T.
  • Source: Agronomy Journal
  • Volume: 100
  • Issue: 6
  • Year: 2008
  • Summary: Continuous no-till (NT) results in soil improvements, primarily in the surface 5 cm of soil. One-time tillage may improve NT systems by inverting surface soil with less improved deeper soil. Research was conducted to determine the change in abundance of soil microbial groups after a one-time tillage of NT and their recovery dynamics. Experiments were conducted under rainfed corn ( Zea mays L.) or sorghum [ Sorghum bicolor (L.) Moench] rotated with soybean [ Glycine max (L.) Merr.] in eastern Nebraska with one-time moldboard plow (MP) and mini-moldboard plow (mini-MP) tillage compared with continuous NT. Fatty acid methyl ester (FAME) profiles were used as biomarkers of soil microbial groups. The biomass of microbial groups within the soil profile was affected by tillage treatment, soil depth, and time after one-time tillage. Soil microbial biomass under NT was greatest at the 0- to 5-cm depth with 50% less in the 5- to 20-cm depth, and least in the 20- to 30-cm depth. Microbial group biomass was decreased by one-time MP tillage, and generally by mini-MP tillage, compared with NT. On an equivalent soil mass basis, the quantity of the arbuscular mycorrhizal (AM) biomarker C16:1(c11) in the second year after tillage was 22% less for tilled treatments compared with NT. In contrast, the fungal biomarker C18:2(c9,12) was 6% more in the second year after tillage for tilled compared with NT. Tillage affected biomass and recovery of microbial groups differently, with all except AM returning to the NT microbial biomass levels within 1 to 3 yr.
  • Authors:
    • Krupinsky, J. M.
    • Tanaka, D. L.
    • Merrill, S. D.
    • van Donk, S. J.
  • Source: Transactions of the ASABE
  • Volume: 51
  • Issue: 5
  • Year: 2008
  • Summary: Residue cover is very important for controlling soil erosion by water and wind. Thus, the wind erosion prediction system (WEPS) includes a model for the decomposition of crop residue. It simulates the fall rate of standing residue and the decomposition of standing and flat residue as a function of temperature and moisture. It also calculates residue cover from flat residue mass. Most of the data used to develop and parameterize this model have been collected in the southern USA. We compared WEPS-simulated residue cover with that measured in south-central North Dakota for 50 two-year cropping sequences from nine crops species that were grown using no-till management. Measured data included residue mass at the time of harvest and residue cover just after seeding the next spring.
  • Authors:
    • Nelson, R. G.
    • Larson, J. A.
    • De La Torre Ugarte, D. G.
    • Marland, g.
    • Tyler, D. D.
    • Hellwinckel, C. M.
    • Wilson, B. S.
    • Brandt, C. C.
    • West, T. O.
  • Source: Soil Science Society of America Journal
  • Volume: 72
  • Issue: 2
  • Year: 2008
  • Summary: To manage lands locally for C sequestration and for emissions reductions, it is useful to have a system that can monitor and predict changes in soil C and greenhouse gas emissions with high spatial resolution. We are developing a C accounting framework that can estimate C dynamics and net emissions associated with changes in land management. One component of this framework integrates field measurements, inventory data, and remote sensing products to estimate changes in soil C and to estimate where these changes are likely to occur at a subcounty (30- by 30-m) resolution. We applied this framework component to a midwestern region of the United States that consists of 679 counties approximately centered around Iowa. We estimated the 1990 baseline soil C to a maximum depth of 3 m for this region to be 4117 Tg. Cumulative soil C accumulation of 70.3 Tg was estimated for this region between 1991 and 2000, of which 33.8 Tg is due to changes in tillage intensity. Without accounting for soil C loss following changes to more intensive tillage practices, our estimate increases to 45.0 Tg C. This difference indicates that on-site permanence of soil C associated with a change to less intensive tillage practices is approximately 75% if no additional economic incentives are provided for soil C sequestration practices. This C accounting framework offers a method to integrate inventory and remote sensing data on an annual basis and to transparently account for alternating annual trends in land management and associated C stocks and fluxes.
  • Authors:
    • Kay, B. D.
    • Wander, M. M.
    • Drury, C. F.
    • Yang, X. M.
  • Source: Pedosphere
  • Volume: 18
  • Issue: 4
  • Year: 2008
  • Summary: Three long-term field trials in humid regions of Canada and the USA were used to evaluate the influence of soil depth and sample numbers on soil organic carbon (SOC) sequestration in no-tillage (NT) and moldboard plow (MP) corn (Zea mays L.) and soybean (Glycine max L.) production systems. The first trial was conducted on a Maryhill silt loam (Typic Hapludalf) at Elora, Ontario, Canada, the second on a Brookston clay loam (Typic Argiaquoll) at Woodslee, Ontario, Canada, and the third on a Thorp silt loam (Argiaquic Argialboll) at Urbana, Illinois, USA. No-tillage led to significantly higher SOC concentrations in the top 5 cm compared to MP at all 3 sites. However, NT resulted in significantly lower SOC in sub-surface soils as compared to MP at Woodslee (10-20 cm, P = 0.01) and Urbana (20-30 cm, P < 0.10). No-tillage had significantly more SOC storage than MP at the Elora site (3.3 Mg C ha(-1)) and at the Woodslee site (6.2 Mg C ha(-1)) on an equivalent mass basis (1350 Mg ha(-1) soil equivalent mass). Similarly, NT had greater SOC storage than NIP at the Urbana site (2.7 Mg C ha(-1)) on an equivalent mass basis of 675 Mg ha-1 soil. However, these differences disappeared when the entire plow layer was evaluated for both the Woodslee and Urbana sites as a result of the higher SOC concentrations in NIP than in NT at depth. Using the minimum detectable difference technique, we observed that up to 1500 soil sample per tillage treatment comparison will have to be collected and analyzed for the Elora and Woodslee sites and over 40 soil samples per tillage treatment comparison for the Urbana to statistically separate significant differences in the SOC contents of sub-plow depth soils. Therefore, it is impracticable, and at the least prohibitively expensive, to detect tillage-induced differences in soil C beyond the plow layer in various soils.
  • Authors:
    • Parkin, T. B.
  • Source: Journal of Environmental Quality
  • Volume: 37
  • Issue: 4
  • Year: 2008
  • Summary: It is generally recognized that soil N2O emissions can exhibit pronounced day-to-day variations; however, measurements of soil N2O flux with soil chambers typically are done only at discrete points in time. This study evaluated the impact of sampling frequency on the precision of cumulative N2O flux estimates calculated from field measurements. Automated chambers were deployed in a corn/soybean field and used to measure soil N2O fluxes every 6 h from 25 Feb. 2006 through 11 Oct. 2006. The chambers were located in two positions relative to the fertilizer bands--directly over a band or between fertilizer bands. Sampling frequency effects on cumulative N2O-N flux estimation were assessed using a jackknife technique where populations of N2O fluxes were constructed from the average daily fluxes measured in each chamber. These test populations were generated by selecting measured flux values at regular time intervals ranging from 1 to 21 d. It was observed that as sampling interval increased from 7 to 21 d, variances associated with cumulative flux estimates increased. At relatively frequent sampling intensities (i.e., once every 3 d) N2O-N flux estimates were within {+/-}10% of the expected value at both sampling positions. As the time interval between sampling was increased, the deviation in estimated cumulative N2O flux increased, such that sampling once every 21 d yielded estimates within +60% and -40% of the actual cumulative N2O flux. The variance of potential fluxes associated with the between-band positions was less than the over-band position, indicating that the underlying temporal variability impacts the efficacy of a given sampling protocol.
  • Authors:
    • Patton, J.
    • Zhang, Q.
    • Vanni, M. J.
    • Renwick, W. H.
  • Source: Journal of Environmental Quality
  • Volume: 37
  • Issue: 5
  • Year: 2008
  • Authors:
    • Roberts, T. L.
  • Source: Turkish Journal of Agriculture and Forestry
  • Volume: 32
  • Year: 2008
  • Summary: Public interest and awareness of the need for improving nutrient use efficiency is great, but nutrient use efficiency is easily misunderstood. Four indices of nutrient use efficiency are reviewed and an example of different applications of the terminology show that the same data set might be used to calculate a fertilizer N efficiency of 21% or 100%. Fertilizer N recovery efficiencies from researcher managed experiments for major grain crops range from 46% to 65%, compared to on-farm N recovery efficiencies of 20% to 40%. Fertilizer use efficiency can be optimized by fertilizer best management practices that apply nutrients at the right rate, time, and place. The highest nutrient use efficiency always occurs at the lower parts of the yield response curve, where fertilizer inputs are lowest, but effectiveness of fertilizers in increasing crop yields and optimizing farmer profitability should not be sacrificed for the sake of efficiency alone. There must be a balance between optimal nutrient use efficiency and optimal crop productivity.
  • Authors:
    • Martius, C.
    • Lamers, J. P. A.
    • Ibragimov, N.
    • Kienzler, K.
    • Wassmann, R.
    • Scheer, C.
  • Source: Global Change Biology
  • Volume: 14
  • Issue: 10
  • Year: 2008
  • Summary: Land use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land-use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 mu g N2O-N m(-2) h(-1) with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer-induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N-fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 mu g N2O-N m(-2) h(-1)), whereas only negligible fluxes of N2O (< 2 mu g N2O-N m(-2) h(-1)) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m(-2) day(-1) and a low seasonal total of 35.2 kg CH4 ha(-1). The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha(-1). The biennial cotton-wheat-rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha(-1) yr(-1). The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.
  • Authors:
    • Snyder, C. S.
  • Year: 2008
  • Summary: The discussion and guides that follow are oriented toward the central U.S. Corn Belt, but are relevant to other cropping systems with similar crop geographies. They are provided to assist in fertilizer nitrogen (N) management decisions that will help lessen the impact of fertilizer N use on greenhouse gas (GHG) emissions and help mitigate the global warming potential (GWP) - expressed as CO2 equivalent. The three GHGs of interest to agriculture are: nitrous oxide (N2O), methane (CH4), and CO2. The GWP of CH4 is 23 times greater and the GWP of N2O is 296 times greater than that of CO2. Because fertilizer N use may be associated with N2O emissions, and because the GWP of N2O is so much greater than CO2, fertilizer N BMPs to reduce N2O emissions are emphasized in this practical guide. For example, fertilizer N BMPs which help minimize excess nitrate (NO3 -) in the soil during warm, wet, or waterlogged conditions can result in lowered risks for N2O emission.
  • Authors:
    • Snyder, K.
    • Sims, P. L.
    • Schuman, G. E.
    • Saliendra, N. Z.
    • Morgan, J. A.
    • Mielnick, P.
    • Mayeux, H.
    • Johnson, D. A.
    • Haferkamp, M.
    • Gilmanov, T. G.
    • Frank, A. B.
    • Emmerich, W.
    • Dugas, W.
    • Bradford, J. A.
    • Angell, R.
    • Svejcar, T.
  • Source: Rangeland Ecology & Management
  • Volume: 61
  • Issue: 5
  • Year: 2008
  • Summary: Rangelands account for almost half of the earth's land surface and may play an important role in the global carbon (C) cycle. We Studied net ecosystem exchange (NEE) of C on eight North American rangeland sites over a 6-yr period. Management practices and disturbance regimes can influence NEE; for consistency, we compared ungrazed and undisturbed rangelands including four Great Plains sites from Texas to North Dakota, two Southwestern hot desert sites in New Mexico and Arizona, and two Northwestern sagebrush steppe sites in Idaho and Oregon. We used the Bowen ratio-energy balance system for continuous measurements of energy, water vapor, and carbon dioxide (CO2) fluxes at each study site during the measurement period (1996 to 2001 for most sites). Data were processed and screened using standardized procedures, which facilitated across-location comparisons. Although almost any site could be either a sink or source for C depending on yearly weather patterns, five of the eight native rangelands typically were sinks for atmospheric CO2 during the study period. Both sagebrush steppe sites were sinks and three of four Great Plains grasslands were sinks, but the two Southwest hot desert sites were sources of C on an annual basis. Most rangelands were characterized by short periods of high C uptake (2 mo to 3 mo) and long periods of C balance or small respiratory losses of C. Weather patterns during the measurement period strongly influenced conclusions about NEE on any given rangeland site. Droughts tended to limit periods of high C uptake and thus cause even the most productive sites to become sources of C on an annual basis. Our results show that native rangelands are a potentially important terrestrial sink for atmospheric CO2, and maintaining the period of active C uptake will be critical if we are to manage rangelands for C sequestration.