- Authors:
- Thompson, J.
- Curan, D.
- Hammer, G. L.
- Sinclair, T. R.
- Messina, C. D.
- Oler, Z.
- Gho, C.
- Cooper, M.
- Source: Agronomy Joural
- Volume: 107
- Issue: 6
- Year: 2015
- Summary: Yield loss due to water deficit is ubiquitous in maize ( Zea mays L.) production environments in the United States. The impact of water deficits on yield depends on the cropping system management and physiological characteristics of the hybrid. Genotypic diversity among maize hybrids in the transpiration response to vapor pressure deficit (VPD) indicates that a limited-transpiration trait may contribute to improved drought tolerance and yield in maize. By limiting transpiration at VPD above a VPD threshold, this trait can increase both daily transpiration efficiency and water availability for late-season use. Reduced water use, however, may compromise yield potential. The complexity associated with genotype * environment * management interactions can be explored in a quantitative assessment using a simulation model. A simulation study was conducted to assess the likely effect of genotypic variation in limited-transpiration rate on yield performance of maize at a regional scale in the United States. We demonstrated that the limited-transpiration trait can result in improved maize performance in drought-prone environments and that the impact of the trait on maize productivity varies with geography, environment type, expression of the trait, and plant density. The largest average yield increase was simulated for drought-prone environments (135 g m -2), while a small yield penalty was simulated for environments where water was not limiting (-33 g m -2). Outcomes from this simulation study help interpret the ubiquitous nature of variation for the limited-transpiration trait in maize germplasm and provide insights into the plausible role of the trait in past and future maize genetic improvement.
- Authors:
- Gregorich, E. G.
- Wu, S.
- Xu, Y.
- Li, B.
- Ouyang, Z.
- Wu, L.
- Qiu, Q.
- Source: Article
- Volume: 96
- Year: 2015
- Summary: Dissolved organic matter (DOM) in soils play an essential role in soil physical, chemical and biological processes, but little information is available on the biodegradability of plant-derived DOM and its effect on soil carbon and nitrogen sequestration in field soils. The objectives of this study were to investigate the impacts of crop residue-derived DOM on soil CO 2 and N 2O emissions, as well as soil carbon and nitrogen sequestration by adding water extracts of maize stalk (i.e., plant-derived DOM) to soils. In this study, wheat was grown in pots under field conditions with treated soils, the soils treatments were: plant-derived DOM (PDOM), urea nitrogen (N), PDOM + urea nitrogen (PDOM + N), as well as a control with no additions to soil (CK). Adding plant-derived DOM to soil increased soil CO 2 and N 2O emissions ( P<0.05). During the wheat growing season, the cumulative CO 2-C emission from CK, PDOM, N and PDOM + N was 1071, 1577, 1362 and 1496 g C m -2, respectively. Meanwhile, the cumulative N 2O-N emission from CK, PDOM, N and PDOM + N was 1888, 2565, 23910 and 2587 mg N m -2, respectively. Compared with N treatment, DOM addition had little effect on soil N sequestration, but it accelerated the decomposition of native soil organic carbon (SOC) and caused a net loss of SOC. The soil C sequestration decreased about 15167 and 5145 g C m -2 in PDOM and PDOM + N treatments, respectively. The increased microbial biomass and root biomass were responsible for the greater CO 2 emission in DOM-amended soils. Negative correlation between dissolved organic carbon (DOC) content and N 2O flux suggested that the release of N 2O was dependent on the supply of DOC. These results indicated that the supply of plant-derived DOM exacerbated soil CO 2 and N 2O emissions and reduced soil C sequestration. Therefore, agricultural management practices that increase the stability of highly soluble C inputs and/or retard the decomposition of crop residues should be adopted to decrease soil greenhouse gas emission and increase soil C sequestration.
- Authors:
- DeSutter, T.
- Clay, S. A.
- Mishra, U.
- Dunn, B. H.
- Reitsma, K. D.
- Clay, D. E.
- Source: Agronomy Journal
- Volume: 107
- Issue: 6
- Year: 2015
- Summary: A growing world population and climate change are expected to influence future agricultural productivity and land use. This study determined the impact of land-use change on soil sustainability and discussed the factors contributing to these changes. South Dakota was selected as a model system because corn ( Zea mays L.) grain prices tripled between 2006 and 2012 and it is located in a climate and grassland/cropland transition zone. High resolution imagery was used to visually determine land uses (cropland, grassland, nonagricultural, habitat, and water) at 14,400 points in 2006 and 2012. At each point, land-use change and the USDA land capability class (LCC) were determined. Over the 6-yr study period, 6.87% of the grasslands (730,000 ha) were converted to cropland, with 93% occurring on lands generally considered suitable for crop production (LCC ≤ IV) if appropriate practices are followed. Converted grasslands, however, had higher LCC values than existing croplands and lower LCC values than remaining grasslands. In addition, 4.2% of the croplands (250,000 ha) were converted to grasslands, and statewide, 20,000 ha of croplands were converted to grasslands in areas limited by excess water (LCC V). The conversion of grasslands could not be linked to one specific factor and may be related to: (i) a desire to increase financial returns, (ii) changes in the land ownership structure, (iii) technology improvements, (iv) governmental policies, (v) climate change, and (vi) an aging workforce. Research and outreach programs that balance the goods and services of different land uses are needed to maintain sustainable agroecosystems.
- Authors:
- Drag, D. W.
- Siebers, M. H.
- Ruiz-Vera, U. M.
- Ort, D. R.
- Bernacchi, C. J.
- Source: Primary Research Article
- Volume: 21
- Issue: 11
- Year: 2015
- Summary: Rising atmospheric CO 2 concentration ([CO 2]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO 2] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO 2] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free-air CO 2 enrichment (FACE) technology was used to target atmospheric [CO 2] to 200 mol mol -1 above ambient [CO 2] and infrared heaters to target a plant canopy increase of 3.5°C, with actual season mean heating of ~2.7°C, mimicking conditions predicted by the second half of this century. Photosynthetic gas-exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C 4 plant, elevated [CO 2] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season-long vegetative biomass and decreasing reproductive biomass accumulation at both CO 2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down-regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO 2] unless appropriate adaptation traits can be introduced into future cultivars.
- Authors:
- Source: Soil and Tillage Research
- Volume: 153
- Year: 2015
- Summary: Field experiments were conducted in 2008-2010 in the Loess Plateau of China to study the effects of straw incorporation on maize growth and biomass water use efficiency (WUE) under semi-arid condition in dark loessial soil. Low (LS 4.5tha-1), medium (MS 9.0tha-1), and high (HS 13.5 tha-1) levels of straw were incorporated into the surface soil combined with fixed levels of inorganic fertilizers (CK) as control. Straw incorporation compared with CK significantly improved biomass yield at the tasseling-maturity stage of maize and WUE at the jointing-ten leaf collar and the tasseling-grain filling stages. WUEs with LS and MS treatments were significantly lower than that with CK at the ten leaf collar-tasseling stage, although the WUEs with MS and HS treatments were significantly higher in the whole growth period. HS treatment compared with LS treatment significantly increased biomass yield at the ten leaf collar-maturity stage and WUE at the jointing-tasseling stage. Meanwhile, MS and HS treatments compared with LS treatment significantly increased the biomass yield at the late grow period. Straw incorporation significantly improved WUE at the sowing-jointing stage and soil organic carbon relative to CK. Biomass yield at the ten leaf collar stage and WUE in whole growth period with LS treatment were significantly higher compared with CK. WUE at the ten leaf collar-tasseling and the grain filling-maturity stages were significantly higher with HS treatment compared with CK. In the long term, the rational straw incorporation level in improving maize biomass yield and WUE was 9.0tha-1. © 2015 Elsevier B.V..
- Authors:
- Wilkens,S.
- Weimer,P. J.
- Lauer,J. G.
- Source: Agronomy Journal
- Volume: 107
- Issue: 6
- Year: 2015
- Summary: Full-season corn ( Zea mays L.) hybrids take advantage of more of the growing season than shorter-season hybrids often leading to greater grain and biomass yield. Many agronomic experiments aimed at corn stover production have been performed at forage harvest rather than later when stover is normally harvested for biofuel measurements. The objective of this research was to evaluate the influence of hybrid relative maturity (days RM) on stover ethanol production, ruminant digestibility, and biomass composition. Hybrids selected were high-yielding commercial grain hybrids grown throughout Wisconsin and ranged from 85 to 115 d RM in 10 d RM increments during 2009, and in 5 d RM increments during 2010. Hybrids were harvested at physiological maturity or after a killing frost. Overall, stover and theoretical ethanol yields increased as RM increased at a linear rate of 0.211 Mg ha -1 RM -1 and 67.1 L ha -1 RM -1. Stover nutritional and biomass composition improved as RM increased, but yield variability was greater than nutritional and biomass compositional variability. Increasing ethanol yields will likely occur by increasing stover yields rather than by altering stover composition. Therefore, until price premiums for stover composition are made available to farmers for ethanol production, the adoption of full-season or longer maturing hybrids should be implemented for increased stover and ethanol yields.
- Authors:
- Arbuckle, J. G., Jr.
- Roesch-McNally, G.
- Source: Journal
- Volume: 70
- Issue: 6
- Year: 2015
- Summary: Cover crops are widely viewed by the soil and water conservation community to be an effective means for reducing soil erosion and nutrient loss and increasing soil health, yet relatively few farmers have adopted the practice. Despite the widespread recognition of cover crops' benefits and increased promotional efforts, there have been very few peer-reviewed studies focused on farmer perspectives on or adoption of cover crops. This study, which analyzed data from a survey and in-depth interviews with Iowa farmers, examined the roles that perceived practice characteristics, perspectives on potential facilitating factors, and crop and livestock diversity play in cover crop adoption among Iowa farmers. As expected, perceived benefits were strongly associated with cover crop use. Measures of crop and livestock diversity were also positive predictors of adoption. In addition, farmers who endorsed strengthening of facilitating factors such as educational and technological infrastructure to support cover crop use were more likely to have adopted cover crops. Farmers who perceived higher levels of risks associated with cover crop use, on the other hand, were less likely to use them. Results suggest that research and promotional efforts should focus on both raising awareness of potential benefits and quantifying and communicating potential risks and risk abatement strategies. Helping farmers to better understand (1) the benefits of cover crops and how they can be enhanced, and (2) the potential risks and ways that they can be minimized might allow farmers to more effectively weigh the probable benefits and costs of cover crop use. The findings further suggest that farmers believe that better facilitating infrastructure, in the form of technical assistance (e.g., agricultural retailers and custom operators) and education, is needed to support the widespread adoption of cover crops.
- Authors:
- Lamb, J. A.
- Fassbinder, J.
- Baker, J. M.
- Source: BioEnergy Research
- Volume: 7
- Issue: 2
- Year: 2014
- Summary: Corn stover removal, whether for silage, bedding, or bioenergy production, could have a variety of environmental consequences through its effect on soil processes, particularly N2O production and soil respiration. Because these effects may be episodic in nature, weekly snapshots with static chambers may not provide a complete picture. We adapted commercially available automated soil respiration chambers by incorporating a portable N2O analyzer, allowing us to measure both CO2 and N2O fluxes on an hourly basis through two growing seasons in a corn field in southern Minnesota, from spring 2010 to spring 2012. This site was part of a USDA multilocation research project for five growing seasons, 2008-2012, with three levels of stover removal: zero, full, and intermediate. Initially in spring 2010, two chambers were placed in each of the treatments, but following planting in 2011, the configuration was changed, with four chambers installed on zero removal plots and four on full removal plots. The cumulative data revealed no significant difference in N2O emission as a function of stover removal. CO2 loss from the full removal plots was slightly lower than that from the zero removal plots, but the difference between treatments was much smaller than the amount of C removed in the residue, implying loss of soil carbon from the full removal plots. This is consistent with soil sampling data, which showed that in five of six sampled blocks, the SOC change in the full removal treatments was negative relative to the zero removal plots. We conclude that (a) full stover removal may have little impact on N2O production, and (b) while it will reduce soil CO2 production, the reduction will not be commensurate with the decrease in fresh carbon inputs and, thus, will result in SOC loss.
- Authors:
- Source: GCB Bioenergy
- Volume: 6
- Issue: 1
- Year: 2014
- Summary: Biofuel crops may help achieve the goals of energy-efficient renewable ethanol production and greenhouse gas (GHG) mitigation through carbon (C) storage. The objective of this study was to compare the aboveground biomass yields and soil organic C (SOC) stocks under four crops (no-till corn, switchgrass, indiangrass, and willow) 7years since establishment at three sites in Ohio to determine if high-yielding biofuel crops are also capable of high levels of C storage. Corn grain had the highest potential ethanol yields, with an average of more than 4100Lha(-1), and ethanol yields increased if both corn grain and stover were converted to biofuel, while willow had the lowest yields. The SOC concentration in soils under biofuels was generally unaffected by crop type; at one site, soil in the top 10cm under willow contained nearly 13Mg Cha(-1) more SOC (or 29% more) than did soils under switchgrass or corn. Crop type affected SOC content of macroaggregates in the top 10cm of soil, where macroaggregates in soil under corn had lower C, N and C:N ratios than those under perennial grasses or trees. Overall, the results suggest that no-till corn is capable of high ethanol yields and equivalent SOC stocks to 40cm depth. Long-term monitoring and measurement of SOC stocks at depth are required to determine whether this trend remains. In addition, ecological, energy, and GHG assessments should be made to estimate the C footprint of each feedstock.
- Authors:
- Castellano, M. J.
- Sawyer, J. E.
- Jeske, E. S.
- Hofmockel, K. S.
- Drijber, R. A.
- Bach, E. M.
- Brown, K. H.
- Source: Global Change Biology
- Volume: 20
- Issue: 4
- Year: 2014
- Summary: Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize-based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0-269kg Nha(-1)yr(-1)) that created a large range in crop residue inputs (3.60-9.94 Mgdry matter ha(-1)yr(-1)), we provide the first agronomic assessment of long-term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico-chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra-aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208kg Nha(-1)yr(-1)) and an excessive N rate (269kg Nha(-1)yr(-1)), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.