- Authors:
- Carvalho, D. F. de
- Botrel, T. A.
- Souza, W. J.
- Silva, L. D. B. da
- Source: Revista Brasileira de Engenharia AgrÃcola e Ambiental
- Volume: 15
- Issue: 8
- Year: 2011
- Summary: The use of localized irrigation using microtube as emitter under turbulent flow regime can be a technically feasible alternative. The objective of this study was to evaluate the performance of a fertigation system in nursery of citrus plants (greenhouse) projected by universal mathematical model, using the microtubes as emitters, under turbulent flow rate and to compare the development of the fertigated plants by microtubes to the system that use the traditional method with hoses. In the size of the length of the emitters was considered the K coefficient of localized energy dissipation using a microtube with internal diameter of 0,761 mm. The fertigation system presented great performance with clogging degree, Christiansen uniformity and emission uniformity values equal to 0,50; 99,95 and 98,21%, respectively, after 160 days of study. Plants that were grown using fertigation with both microtubes and hoses showed no difference as regards to stem diameter and height. Thus, the use of the microtube under turbulent flow rate presented technical feasible for fertigation system.
- Authors:
- Lee, G. J.
- Abdel-Haleem, H.
- Boerma, R. H.
- Source: Theoretical and Applied Genetics
- Volume: 122
- Issue: 5
- Year: 2011
- Summary: Drought stress adversely affects soybean at various developmental stages, which collectively results in yield reduction. Unpredictable rainfall has been reported to contribute about 36% to variation of yield difference between the rain-fed and irrigated fields. Among the drought resistance mechanisms, drought avoidance in genotypes with fibrous roots was recognized to be associated with drought resistance in soybean. Plant introduction PI416937 was shown to possess fibrous roots and has been used as a parent in breeding programs to improve soybean productivity. Little information is available on relative contribution and chromosomal location of quantitative trait loci (QTL) conditioning fibrous roots in soybean. To identify the genomic locations and genetic bases of this trait, a recombinant inbred line population was derived from a cross between PI416937 and 'Benning'. To detect associated QTLs, phenotypic data were collected and analyzed for 2 years under rain-fed field conditions. The selective genotyping approach was used to reduce the costs and work associated with conducting the QTL analysis. A total of five QTLs were identified on chromosomes Gm01 (Satt383), Gm03 (Satt339), Gm04 (Sct_191), Gm08 (Satt429), and Gm20 (Sat_299), and together explained 51% of the variation in root score. Detected QTLs were co-localized with QTLs related to root morphology, suggesting that fibrous roots QTL may be associated with other morpho-physiological traits and seed yield in soybean. Genetic dissection of the fibrous roots trait at the individual marker loci will allow for marker-assisted selection to develop soybean genotypes with enhanced levels of fibrous roots.
- Authors:
- Nagih, A.
- Lemalade, J. L.
- Alfandari, L.
- Plateau, G.
- Source: Annals of Operations Research
- Volume: 190
- Issue: 1
- Year: 2011
- Summary: We propose a Mixed-Integer Linear Programming model for a class of multi-period crop rotation optimization problems with demand constraints and incompatibility constraints between cultivation and fallow state on a land plot. This model is applied to a case study on Madagascan farms in the scope of a sustainable development campain against deforestation, where the objective is to better control agricultural space while covering seasonal needs of farmer. We propose an efficient upper bound computation and study the variation of the minimum number of plots and total space needed in function of the unitary surface area of a plot. Numerical results associated with the Madagascan case are reported.
- Authors:
- Costa Crusciol, C. A.
- Calonego, J. C.
- Amaral Castro, G. S.
- Source: Pesquisa Agropecuária Brasileira
- Volume: 46
- Issue: 12
- Year: 2011
- Summary: The objective of this work was to evaluate the effects of crop rotation systems and liming materials on soil physical properties. The experiment was carried out from October 2006 to July 2008, in Botucatu, SP, Brazil, in a completely randomized block design in a split-plot arrangement with eight replicates. Main plots consisted of four crop rotation systems: soybean/fallow/maize/fallow, soybean/white-oat/maize/bean, soybean/millet/maize/pigeon pea and soybean/signal grass/maize/signal grass. Subplots consisted of the control treatment, without soil correction, and of the application of 3.8 Mg ha(-1) of dolomitic lime (ECC = 90%) or 4.1 Mg ha(-1) of calcium-magnesium silicate (ECC = 80%), on the surface of a clayed Rhodic Ferralsol. Aggregate stability, soil bulk density, total porosity, macro and microporosity, soil penetration resistance and moisture content were evaluated. Superficial application of the lime materials does not reduce soil aggregation and increases macroporosity down to 0.20 m, with calcium-magnesium silicate application, and to 0.10 m, when lime is applied. Soil under fallow in off-season decreases aggregate stability and increases soil penetration resistance in upper layers. The cultivation of Congo signal grass, between summer crops, increases aggregate stability down to 0.10-m depth.
- Authors:
- Lima, N. R. C. de B.
- Mendonca, F. C.
- Santos, P. M.
- Araujo, L. C. de
- Source: Revista Brasileira de Zootecnia
- Volume: 40
- Issue: 7
- Year: 2011
- Summary: The objective of this work was to evaluate the development and productive traits of palisadegrass single cultivated or intercropped with corn, in addition to corn intercropped with pasture, under water deficit at different development stages of the plants. It was used a complete block experimental design with split plots and three replicates. Periods of water deficit were placed in the plots and types of cultivation were placed in the subplots. Irrigation was stopped at germination and initial tillering of palisadegrass and at V4 and V15 stages of corn and returned when soil moisture was 40% of available water capacity. Tiller density and palisadegrass height were evaluated weekly. Dry matter (DM) of fractions of herbage mass as well as leaf area of the plants were evaluated at corn tasseling and when grains reached physiological maturity. Components of corn production were determined in the second sampling. In palisadegrass, water influenced only tillering, which was reduced in the plots in which water defict was forced at the moment of germination or at the beginning of tilering, in both cultivation systems. Plant height and DM production were affected only by cultivation, reducing when intercropped with corn. Evaluated production components did not influence corn grain productivity, which was similar in all treatments (average of 10,145 kg/ha). Palisadegrass plants produce more DM in single cultivation than intercropped with corn. Water deficit during germination and initial tillering reduces tillering of palisadegrass during establishment phase. Water deficit, applied in this trial, does not reduce DM yield in palisadegrass or corn.
- Authors:
- Tann, C. R.
- Baker, G. H.
- Fitt, G. P.
- Source: Bulletin of Entomological Research
- Volume: 101
- Issue: 1
- Year: 2011
- Summary: Pheromone and light traps have often been used in ecological studies of two major noctuid pests of agriculture in Australia, Helicoverpa armigera and H. punctigera. However, results from these two methods have rarely been compared directly. We set pheromone and light traps adjacent to or amongst cotton and various other crops for 10-11 years in the Namoi Valley, in northern New South Wales, Australia. Catches in pheromone traps suggested a major peak in (male) numbers of H. punctigera in early spring, with relatively few moths caught later in the summer cropping season. In contrast, (male) H. armigera were most abundant in late summer. Similar trends were apparent for catches of both male and female H. armigera in light traps, but both sexes of H. punctigera were mostly caught in mid-summer. For both species, males were more commonly caught than females. These catch patterns differed from some previous reports. At least three generations of both species were apparent in the catches. There was some evidence that the abundance of later generations could be predicted from the size of earlier generations; but, unlike previous authors, we found no positive relationships between local winter rainfall and subsequent catches of moths, nor did we find persuasive evidence of correlations between autumn and winter rainfall in central Australia and the abundance of subsequent 1st generation H. punctigera moths. Female H. punctigera were consistently more mature (gravid) and more frequently mated than those of H. armigera. Overall, our results highlight the variability in trap catches of these two species and question the use of trap catches and weather as predictors of future abundance in cropping regions.
- Authors:
- Dela Piccolla, C.
- Mafra, A. L.
- Pelissari, A.
- de Moraes, A.
- da Veiga, M.
- Balbinot Junior, A. A.
- Source: Pesquisa Agropecuária Brasileira
- Volume: 46
- Issue: 10
- Year: 2011
- Summary: The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha(-1) of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.
- Authors:
- Gillen, A. M.
- Reddy, K. N.
- Bellaloui, N.
- Fisher, D. K.
- Mengistu, A.
- Source: American Journal of Plant Sciences
- Volume: 2
- Issue: 5
- Year: 2011
- Summary: Information on the effect of planting date and irrigation on soybean [ Glycine max (L.) Merr.] seed composition in the Early Soybean Production System (ESPS) is deficient, and what is available is inconclusive. The objective of this research was to investigate the effects of planting date on seed protein, oil, fatty acids, sugars, and minerals in soybean grown under irrigated (I) and non-irrigated (NI) conditions. A 2-yr field experiment was conducted in Stoneville, MS in 2007 and 2008. Soybean was planted during second week of April (early planting) and second week of May (late planting) each year. Results showed that under irrigated condition, early planting increased seed oil (up to 16% increase) and oleic acid (up to 22.8% increase), but decreased protein (up to 6.6% decrease), linoleic (up to 10.9% decrease) and linolenic acids (up to 27.7% decrease) compared to late planting. Under I conditions, late planting resulted in higher sucrose and raffinose and lower stachyose compared with early planting. Under NI conditions, seed of early planting had higher protein (up to 4% increase) and oleic acid (up to 25% increase) and lower oil (up to10.8% decrease) and linolenic acids (up to 13% decrease) than those of late planting. Under NI, stachyose concentration was higher than sucrose or raffinose, especially in early planting. Under I, early planting resulted in lower leaf and seed B, Fe, and P concentrations compared with those of late planting. Under NI, however, early planting resulted in higher accumulation of leaf B and P, but lower seed B and P compared with those of late planting. This research demonstrated that both irrigation and planting date have a significant influence on seed protein, oil, unsaturated fatty acids, and sugars. Our results suggest that seed of late planting accumulate more B, P, and Fe than those of early planting, and this could be a beneficial gain. Limited translocation of nutrients from leaves to seed under NI is undesirable. Soybean producers may use this information to maintain yield and seed quality, and soybean breeders to select for seed quality traits and mineral translocation efficiency in stress environments.
- Authors:
- Risede, J.-M.
- Foster, J.
- Rhodes, R.
- Berry, S. D.
- van Antwerpen, R.
- Source: International Journal of Pest Management
- Volume: 57
- Issue: 4
- Year: 2011
- Summary: Plant-parasitic nematodes cause significant yield losses to sugarcane crops in South Africa. The currently available chemicals for nematode control are both expensive and potentially detrimental to the environment. Various alternative crops have been reported to reduce the numbers of plant-parasitic nematodes. Mindful of this, we evaluated 27 cover crops in pot trials to assess their host status to important plant-parasitic nematodes of sugarcane. All of the crops tested in pots hosted significantly lower numbers of Pratylenchus than did sugarcane. Crops such as cowpeas, tomato and grazing vetch were good hosts for Meloidogyne and would not be good choices as part of a sugarcane rotation system in heavily-infested soils. Conversely, crops such as oats, wheat, forage peanuts and marigolds reduced numbers of Meloidogyne. Velvet beans increased the abundance of Helicotylenchus, a beneficial nematode genus. A field trial was also conducted to study the effect of different cover cropping sequences. Our results show that changes in nematode communities occurred within three months of growing these crops and often remained low for the duration (the remaining 15 months) of the crops' growth. Nematodes such as Pratylenchus and Tylenchorhynchus were significantly lowered and remained so for the duration of the trial.
- Authors:
- Lindau, C.
- Bollich, P.
- Bond, J.
- Source: Communications in Soil Science and Plant Analysis
- Volume: 41
- Issue: 13
- Year: 2010
- Summary: This field study was conducted over a 3-year time period in Louisiana to determine which soybean ( Glycine max L.) tillage practice discharged the least amount of nutrients and sediment from experimental plots after rainfall/runoff events. In addition, tillage effect on soybean yield was investigated. Experimental design consisted of three Louisiana soybean tillage treatments [conventional (CT), stale seedbed (SS), and no-till (NT)] with three replications per treatment. A randomized complete-block design was used for statistical analysis. Each of the nine treatment plots measured 27.1 m by 106.4 m and was equipped with an automatic runoff sampler integrated with a continuously recording flow meter and H-flume. Composite runoff samples were analyzed for ammonium N (NH 4+-N), nitrate N (NO 3--N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), orthophosphorus (ortho-P), total organic carbon (TOC), and total solids (TS). Analyte discharge (kg ha -1) per rainfall/runoff event was calculated using runoff concentrations and total runoff flows (L). Statistical analysis showed that discharge treatment means were highly variable and that tillage practice had little or no effect on total runoff and on the amount of N and P discharged from treatment plots. Treatment differences over the study were nonsignificant for all N and P forms 93% and 61% of the time, respectively. Only 21% of the time was mean treatment total runoff significant ( P≤0.05). Stale seedbed and NT practices reduced sediment discharges over segments of the soybean growing seasons. Total organic carbon discharge from the NT plots was significantly greater 42% of the time. Soybean yields were highly variable within and between treatments and strongly influenced by rainfall, disease, and insects.