- Authors:
- Macdonald, B. C. T.
- Bryant, G.
- White, I.
- Moody, P.
- Stainlay, W.
- Dalal, R. C.
- Denmead, O. T.
- Source: Proceedings of the Australian Society of Sugar Cane Technologists
- Volume: 28
- Year: 2006
- Authors:
- Grace, P. R.
- Post, W. M.
- Hennessy, K.
- Source: Carbon Balance and Management
- Volume: 1
- Year: 2006
- Authors:
- Chapman, D.
- Johnson, I.
- Eckard, R.
- Source: International Congress Series
- Volume: 1293
- Year: 2006
- Authors:
- Valdes, G. S. B.
- Lee, H. C.
- Cook, H. F.
- Source: Soil & Tillage Research
- Volume: 91
- Issue: 1-2
- Year: 2006
- Summary: Application of organic amendment to the soil surface is widely used in order to ameliorate topsoil physical conditions, especially with respect to temperature, evaporation and water content. Water intercepted by mulch and crop canopy involves loss through evaporation that never replenishes the soil water. In this study, hydrological and temperature conditions beneath mulches of manufactured materials, organic waste, wheat straw ( Triticum aestivum L.) and soybean straw ( Glycine max L. Merrill) applied at different thickness were investigated in glasshouse and field conditions in southern England. Interception loss by a maize ( Zea mays L.) canopy and mulch modified the soil water balance by adversely affecting soil water content beneath thicker application. Mulching had a beneficial effect on soil water and temperature regimes. These findings are important for identifying mulching practices for dryland agriculture and under scenarios of climatic change that predict lower rainfall and higher temperatures in summer.
- Authors:
- Deregibus, V. A.
- Bartoloni, N.
- Rodriguez, A. M.
- Jacobo, E. J.
- Source: Rangeland Ecology & Management
- Volume: 59
- Issue: 3
- Year: 2006
- Summary: We evaluated the adequacy of rotational grazing to improve rangeland condition in the Flooding Pampa region, eastern Argentina, comparing the floristic composition dynamic of the 2 main plant communities under rotational and continuous grazing over a study period of 4 years (1993-1996). The experiment was conducted in commercial farms located in 4 sites of the Flooding Pampa region. In each site, a couple of farms, one managed under rotational grazing (implemented in 1989) and an adjacent one managed under continuous grazing at a similar stocking rate (1 AU(.)ha(-1)), constituted the replications of the experiment. Basal cover of species, litter, and bare soil were monitored in midslope and lowland grassland communities on each farm. Total plant basal cover in midslope and in lowland communities remained unchanged over the whole experimental period under both grazing methods. Under rotational grazing, litter cover was higher in both communities while the amount of bare soil showed a significant reduction in lowlands and a tendency to be lower in midslope. Basal cover of legumes, C-3 annual and C-3 perennial grasses was higher, while cover of C-4 prostrate grasses was lower under rotational grazing in the midslope community. In the lowland community, rotational grazing effects were evident only in the drier years, when higher cover of hydrophytic grasses and legumes and lower cover of forbs occurred. Plant species diversity did not change in response to grazing. In conclusion, rotational grazing promoted functional groups composed of high forage value species and reduced bare soil through the accumulation of litter. These changes indicate an improvement in rangeland condition and in carrying capacity. As the stocking rate was approximately 60% higher than the average stocking rate of the Flooding Pampa region, we believe that productivity and sustainability may be compatible by replacing continuous with rotational grazing.
- Authors:
- Zwart, K.
- Smit, A.
- van der Hoek, K. W.
- Kuikman, P. J.
- Year: 2006
- Summary: Emissions of nitrous oxide (N2O) in the Netherlands are reported to the UNFCCC on the basis of a country specific methodology. In this study we have identified and anlysed the values for emission facotrs in measurement from in the Netherlands in the period 1993 - 2003. The overall averaged emission factor extracted from over 86 series of one year measurements on nitrous oxide emission from agricultural fields in the Netherlands is 1.1% and a weighed average for soil types is 1.01%. The average for mineral soils is 0.88%. The calculated emissions factors are lower than the value suggested by the IPCC for EF1 for fertilizer and animal manure of 1.25%. We recommend to use a value of 1.0% for EF1 and to use corrections of EF1 in reporting the use of fertilizers without nitrate (0.5%), for subsurface application of manure (1.5%) and for fertilizer, manure and urine on organic soils (2.0%).
- Authors:
- Paustian, K.
- Lokupitiya, E.
- Source: Journal of Environmental Quality
- Volume: 35
- Year: 2006
- Summary: Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit national greenhouse gas (GHG) inventories, together with information on methods used in estimating their emissions. Currently agricultural activities contribute a significant portion (approximately 20%) of global anthropogenic GHG emissions, and agricultural soils have been identified as one of the main GHG source categories within the agricultural sector. However, compared to many other GHG sources, inventory methods for soils are relatively more complex and have been implemented only to varying degrees among member countries. This review summarizes and evaluates the methods used by Annex 1 countries in estimating CO2 and N2O emissions in agricultural soils. While most countries utilize the Intergovernmental Panel on Climate Change (IPCC) default methodology, several Annex 1 countries are developing more advanced methods that are tailored for specific country circumstances. Based on the latest national inventory reporting, about 56% of the Annex 1 countries use IPCC Tier 1 methods, about 26% use Tier 2 methods, and about 18% do not estimate or report N2O emissions from agricultural soils. More than 65% of the countries do not report CO2 emissions from the cultivation of mineral soils, organic soils, or liming, and only a handful of countries have used country-specific, Tier 3 methods. Tier 3 methods usually involve process-based models and detailed, geographically specific activity data. Such methods can provide more robust, accurate estimates of emissions and removals but require greater diligence in documentation, transparency, and uncertainty assessment to ensure comparability between countries. Availability of detailed, spatially explicit activity data is a major constraint to implementing higher tiered methods in many countries.
- Authors:
- O'Mara, F. P.
- Dillon, P.
- Shalloo, L.
- Lovett, D. K.
- Source: Agricultural Systems
- Volume: 88
- Issue: 2-3
- Year: 2006
- Summary: A model was developed to determine what effect management practices would have on the production of the greenhouse gases (GHG) within pastorally based dairy production systems typical of those practiced in Ireland. The model simulates two levels of GHG emissions, firstly the on-farm GHG emissions of methane, nitrous oxide and carbon dioxide for example from the pastorally spreading of slurry and secondly, off-farm GHG emissions associated with both inputs brought onto the farm to maintain productivity (for example emissions arising from manufacture of concentrate feeds and fertiliser) as well as from indirect GHG emissions associated with nitrate leaching and ammonia. The aim of this work was to allow the development of effective GHG mitigation strategies at the farm level capable of reducing GHG emissions per litre of milk. Greenhouse gas emissions were modelled for nine farming systems differing in the level of concentrate supplementation (376, 810 and 1540 kg per cow per lactation) and genotype for milk production as assessed by their pedigree index (<100, 100-200 and 200-300 kg) of milk production. A three-year study to evaluate the influence of cow genetic potential for milk production and concentrate supplementation level on profitability of pasture-based systems of milk production was used to drive the Moorepark Dairy Systems Model (MDSM). Output from this model then described farm size, feed budgets, animal numbers and farm profitability when annual milk quota was set to 468,000Â kg of milk year. Relating GHG emissions to annual milk sales revealed that for these pastorally based systems increasing concentrate usage reduced both on-farm and off-farm emissions, but that increasing the genotype of the dairy cow (i.e., the genetic capacity of the animal to produce milk) will increase both on-farm and off-farm GHG emissions. Lowest GHG emissions per kilogram of milk were achieved for an intermediate genotype type cow fed within a high concentrate system whilst the highest emissions were associated with high genotype cows fed within a low concentrate system. Maximum profitability was obtained when either a high concentrate feeding regime was combined with high genotype cows or where low concentrate systems were fed to low genotype cows. Relating farm profitability to GHG emissions allowed the identification of scenarios where changing from one management systems to another would achieve a simultaneous reduction in GHG emissions whilst improving farm profitability. By implementing this approach of assessing management induced change on both GHG emissions arising from the farm together with farm profitability, individual whole farm GHG mitigation strategies could be developed with a high degree of acceptability to the producer.
- Authors:
- Perez, A.
- Ali, M.
- Pollack, S.
- Lucier, G.
- Year: 2006
- Summary: The U.S. fruit and vegetable industry accounts for nearly a third of U.S. crop cash receipts and a fifth of U.S. agricultural exports. A variety of challenges face this complex and diverse industry in both domestic and international markets, ranging from immigration reform and its effect on labor availability to international competitiveness. The national debate on diet and health frequently focuses on the nutritional role of fruit and vegetables, and a continued emphasis on the benefits of eating produce may provide opportunities to the industry. In the domestic market, Americans are eating more fruit and vegetables than they did 20 years ago, but consumption remains below recommended levels. In terms of per capita consumption expressed on a fresh-weight basis, the top five vegetables are potatoes, tomatoes, lettuce, sweet corn, and onions while the top five fruit include oranges, grapes (including wine grapes), apples, bananas, and pineapples. The industry also faces a variety of trade-related issues, including competition with imports. During 2002-04, imports accounted for 21 percent of domestic consumption of all fresh and processed fruit and vegetables, up from 16 percent during 1992-94.
- Authors:
- Giardini, L.
- Berti, A.
- Lugato, E.
- Source: Geoderma
- Volume: 135
- Year: 2006
- Summary: Crop residue incorporation is recognised as a simple way to increase C input into the soil, with positive effects on C sequestration from the atmosphere. However, in some long-term experiments, a lack of response to soil C input levels has been observed as a consequence of saturation phenomena and/or interactions between C input and fertilisation. This paper analyses the outcomes of a long-term experiment in north-eastern Italy that started in 1966 and is still ongoing, where residue incorporation is compared with residue removal, over a range of mineral N fertilisations. A general decrease of SOC content was observed in the first 10 years of the experiment, followed by an approach to a steady state. However, SOC content differed markedly according to residue management and, in plots with residue incorporation, to N fertilisation. Considering 20 years as a compromise period for reaching a new equilibrium after a land-use change, the sequestration rate of residue incorporation in comparison with removal resulted as 0.17 t ha-1 of C per year. The measured data were then simulated with Century, a model based on first-order decomposition kinetic, to evaluate if the data could be interpreted by this kind of decomposition process. Model performances were good in most cases, but overestimated SOC decomposition in the more limiting situations for C and N inputs. A possible explanation is given for this behaviour, involving a feed-back effect of the microbial community.