• Authors:
    • Kelly, K.
    • Armstrong, R.
    • Phillips, F.
    • Officer, S. J.
  • Source: 14th Australian Agronomy Conference
  • Year: 2008
  • Authors:
    • Graham, J.
    • Kelly, K.
    • Li, Y.
    • Chen, D.
    • Edis, R.
    • Turner, D. A.
  • Source: The 2008 Joint Annual Meeting
  • Year: 2008
  • Authors:
    • Dalal, R. C.
    • Salter, B.
    • Reeves, S. H.
    • Moody, P. W.
    • Wang, W. J.
  • Source: Proceedings of Australian Society of Sugarcane Technologists
  • Volume: 30
  • Year: 2008
  • Authors:
    • Eckard, R.
    • Barker-Reid, F.
    • Chen, D.
    • Li, Y.
  • Source: Plant and Soil
  • Volume: 309
  • Issue: 1-2
  • Year: 2008
  • Authors:
    • Edis, R. B.
    • Park, K.
    • Meyer, M.
    • Kirkby, C.
    • Chen, D.
    • Wang, G.
    • Turner, D. A.
  • Source: Australian Journal of Experimental Agriculture
  • Volume: 48
  • Issue: 3
  • Year: 2008
  • Authors:
    • Endale, D. M.
    • Schomberg, H. H.
    • Fisher, D. S.
    • Jenkins, M. B.
    • Sharpe, R. R.
    • Cabrera, M. L.
  • Source: Agronomy Journal
  • Volume: 100
  • Issue: 5
  • Year: 2008
  • Summary: Corn (Zea mays L.) producers in the southeastern United States must overcome soil and water limitations to take advantage of the expanding corn market. In this 2001 to 2005 study on a Cecil sandy loam (fine, kaolinitic, thermic Typic Kanhapludult) near Watkinsville, GA, we compared dry land corn biomass and yield under conventional tillage (CT) vs. no-tillage (NT) with ammonium nitrate or sulfate (based on availability) as conventional fertilizer (CF) vs. poultry litter (PL). In a randomized complete block split plot design with three replications, main plots were under tillage and subplots under fertilizer treatments. The cover crop was rye (Secale cereale L.). Over 5 yr, NT and PL increased grain yield by 11 and 18%, respectively, compared with CT and CF. Combined, NT and PL increased grain yield by 31% compared with conventionally tilled and fertilized corn. Similarly, soil water was 18% greater in NT than CT in the 0- to 10-cm depth. In 2 yr of measurements, dry matter of stalks and leaves and leaf area index under PL were an average of 39 and 22% greater, respectively, than under CF during reproduction. Values were 21 and 6% greater, respectively, under NT than CT but during tasseling. Analysis of 70 yr of daily rainfall records showed that supplemental irrigation is needed to meet optimal water requirement. Our results indicate that corn growers can use rainfall more efficiently, reduce yield losses to drought, and expect increased corn yields with a combination of no-tillage management and long-term use of poultry litter.
  • Authors:
    • Kang, J.
    • Osmond, D. L.
  • Year: 2008
  • Authors:
    • Reddy, K. C.
    • Tazisong, I. A.
    • Nyakatawa, E. Z.
    • Senwo, Z. N.
    • Sainju, U. M.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 127
  • Issue: 3-4
  • Year: 2008
  • Summary: Disposal of poultry litter, a widely available organic manure in the southeastern USA because of a large-scale poultry industry, is a major concern because of its contamination in surface- and groundwater through N leaching and P runoff. Application of poultry litter in no-tilled intensive cropping system could increase soil C and N sequestration compared with the conventional-tilled system with inorganic N fertilization and reduce environmental contamination. We evaluated the 10-year effects of tillage, cropping systems, and N fertilizer sources on crop residue (stems + leaves) production and soil bulk density, organic C (SOC), and total N (STN) at the 0-20 cm depth in Decatur silt loam (clayey, kaolinitic, thermic, and Typic Paleudults) in northern AL, USA. Treatments were incomplete factorial combinations of three tillage practices [no-till (NT), mulch till (MT), and conventional till (CT)], two cropping systems [cotton (Gossypium hirsutum L.)-cotton-corn (Zea mays Q and rye (Secale cereale L.)/cotton-rye/cotton-corn], and two N fertilization sources and rates (0 and 100 kg N ha(-1) from NH4NO3, and 100 and 200 kg N ha(-1) from poultry litter) in randomized complete block with three replications. Rye was grown as winter cover crop and corn as residual crop without tillage and fertilization. Mean crop residue returned to the soil from 1997 to 2005 was greater in rye/cotton-rye/cotton-corn than in cotton-cotton-corn and greater with NH4NO3 than with poultry litter at 100 kg N ha(-1). While SOC and STN concentrations at 10-20 cm after 10 years were not influenced by treatments, SOC and STN contents at 0-20 cm were greater with poultry litter than with NH4NO3 in NT and CT. These resulted in a C sequestration rate of 510 kg C ha(-1) year(-1) and N sequestration rates of 41-49 kg N ha(-1) year(-1) with poultry litter compared with -120 to 147 kg C ha(-1) year(-1) and -23 to -3 kg N ha(-1) year(-1), respectively, with NH4NO3. Cropping and fertilization sequestered C at 730 kg C ha(-1) year(-1) and N at 67 kg N ha(-1) year(-1) compared with fallow and no-fertilization in NT. Tillage and cropping system did not influence SOC and STN. Long-term poultry litter application or continuous cropping can sequester C and N in the soil compared with inorganic N fertilization or fallow, thereby increasing soil quality and productivity and reducing the potentials for N leaching and greenhouse gas emission. Published by Elsevier B.V.
  • Authors:
    • Place, F.
    • Ajayi, O. C.
    • Akinnifesi, F. K.
    • Sileshi, G.
  • Source: Plant and Soil
  • Volume: 307
  • Issue: 1-2
  • Year: 2008
  • Summary: A number of studies have tested the effect of woody and herbaceous legumes on soil fertility and maize yields in sub-Saharan Africa. However, their effects on maize productivity are much debated because results have been variable. A meta-analysis was conducted with the aim of evaluating the evidence in support of yield benefits from woody and herbaceous green manure legumes. A total of 94 peer-reviewed publications from West, East and southern Africa qualified for inclusion in the analysis. Maize yield from herbaceous green manure legumes (54 publications), non-coppicing legumes (48 publications), coppicing woody legumes (10 publications), natural fallows (29 publications), and fully fertilized monoculture maize (52 publications) were compared. Mixed linear modelling using yield differences (D) and response ratios (RR) indicated that the response to legumes is positive. The mean yield increase (D) over unfertilized maize was highest (2.3 t ha-1) and least variable (CV=70%) in fully fertilized maize, while it was lowest (0.3 t ha-1) and most variable (CV=229%) in natural fallows. The increase in yield over unfertilized maize was 1.6 t ha-1 with coppicing woody legumes, 1.3 t ha-1 with non-coppicing woody legumes and 0.8 t ha-1 with herbaceous green manure legumes. Doubling and tripling of yields relative to the control (RR > 2) was recorded in coppicing species (67% of the cases), non-coppicing legumes (45% of the cases), herbaceous green manure legumes (16% of the cases) and natural fallows (19% of the cases). However, doubling or tripling of yields occurred only in low and medium potential sites. Amending post-fallow plots with 50% of the recommended fertilizer dose further increased yields by over 25% indicating that legume rotations may play an important role in reducing fertilizer requirements. Except with the natural fallow, the 95% confidence intervals of D and RR were higher than 1 and 0, respectively indicating significant and positive response to treatments. Therefore, it is concluded that the global maize yield response to legumes is significantly positive and higher than unfertilized maize and natural vegetation fallows.
  • Authors:
    • Smith, R. F.
    • Koike, S. T.
    • Yokota, R.
    • Murphree, L.
    • Jackson, L. E.
    • Smukler, S. M.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 126
  • Issue: 3-4
  • Year: 2008
  • Summary: Studying the management strategies suited to large-scale organic production, particularly during the mandated 3-year transition period from conventional management, is a unique research challenge. Organic production traditionally relies on small, diverse plantings and complex management responses to cope with soil fertility and pest pressures, so research should represent decision-making options of an organic grower at the farm scale. This study analyzes crop, soil, pest and management changes during the organic transition period on two ranches (40 and 47 ha) in the Salinas Valley, California in cooperation with a large conventional vegetable producer, Tanimura and Antle, Inc. Permanent transects were established across the two ranches at the onset of adoption of organic practices, and soil and plants were sampled at harvest of almost all crops, while all management operations were recorded by the co-operator. The similar to 10 ha blocks were divided into many small plantings, and 17 different cash crop and cover crop species were planted during the transition period. Management inputs consisted of a range of organic fertilizers and amendments, sprinkler and drip irrigation, cultivation and hand-hoeing, and several types of organic pesticides. Results from the 3-year period followed these general trends: increase in soil biological indicators (microbial biomass and arbuscular mycorrhizae), low soil nitrate pools, adequate crop nutrients, minor disease and weed problems, and sporadic mild insect damage. Multivariate statistical analyses indicated that some crops and cultivars consistently produced higher yields than others, relative to the maximum yield for a given crop. Multi-factor contingency tables showed clear differences in insect and disease damage between crop taxa. Although Tanimura and Antle, Inc. used some of the principles of organic farming (e.g., crop diversity, crop rotation, and organic matter (OM) management), they also relied on substitution-based management, such as fertigation with soluble nutrients, initially heavy applications of organic pesticides, and use of inputs derived from off-farm sources. Their initial production of a large number of crop taxa in small plantings at staggered intervals proved to be an effective strategy for avoiding risks from low yields or crop failure and allowed them to move towards a smaller number of select, successful crops towards the end of the transition. This study demonstrates the feasibility of large-scale producers to transition to organic practices in a manner that was conducive to both production goals and environmental quality, i.e., increased soil C pools, low soil nitrate, and absence of synthetic pesticides. (C) 2008 Elsevier B.V. All rights reserved.