- Authors:
- Tanaka, D. L.
- Black, A. L.
- Source: Soil Organic Matter in Temperate Agroecosystems
- Year: 1997
- Authors:
- Mallarino, A. P.
- Voss, R. D.
- Blackmer, A. M.
- Source: Iowa State Cooperative Extension publication
- Year: 1997
- Summary: Nitrogen fertilizer recommendations for corn in the state of Iowa, USA.
- Authors:
- Harapiak, J.
- Lafond, G.
- Johnston, A.
- Head, W.
- Source: Journal of Production Agriculture
- Volume: 10
- Issue: 3
- Year: 1997
- Summary: A research study was conducted in Saskatchewan and Alberta to determine the potential for precision side band application of partially liquified anhydrous ammonia (AA) at sowing. While AA reduced plant stand over that observed with urea for both wheat and canola [rape], no effect on grain yields of wheat were observed from seven field trials. The use of AA did not adversely affect the rate of wheat establishment as measured by main stem Haun stage or plant development as measured by number of root axes and frequency of tillers produced. With canola, a reduction in seed yield was observed at only one of the five trial sites. The lower canola yield reflects the N loss when AA is applied on clay soils. Loss of AA on clay and silty clay soils, which were wet at application, resulted in reduced crop N uptake and lowered N use efficiency relative to urea at one wheat and two of the canola trial locations. It is suggested that given adequate seed-fertilizer separation, partially liquified AA can be safely applied at sowing in a precision side band application. Soil conditions that are known to cause N loss on application of AA, in particular wet clay and silty clay soils, may benefit more from an alternative N source such as granular urea or solution N.
- Authors:
- Harriss, R. C.
- Narayanan, V.
- Li, C.
- Source: Global Biogeochemical Cycles
- Volume: 10
- Issue: 2
- Year: 1996
- Summary: The Denitrification-Decomposition (DNDC) model was used to elucidate the role of climate, soil properties, and farming practices in determining spatial and temporal variations in the production and emission of nitrous oxide (N[2]O) from agriculture in the United States. Sensitivity studies documented possible causes of annual variability in N[2]O flux for a simulated Iowa corn-growing soil. The 37 scenarios tested indicated that soil tillage and nitrate pollution in rainfall may be especially significant anthropogenic factors which have increased N[2]O emissions from soils in the United States. Feedbacks to climate change and biogeochemical manipulation of agricultural soil reflect complex interactions between the nitrogen and carbon cycles. A 20% increase in annual average temperature in °C produced a 33% increase in N[2]O emissions. Manure applications to Iowa corn crops enhanced carbon storage in soils, but also increased N[2]O emissions. A DNDC simulation of annual N[2]O emissions from all crop and pasture lands in the United States indicated that the value lies in the range 0.9 - 1.2 TgN. Soil tillage and fertilizer use were the most important farming practices contributing to enhanced N[2]O emissions at the national scale. Soil organic matter and climate variables were the primary determinants of spatial variability in N[2]O emissions. Our results suggest that the United States Government, and possibly the Intergovernmental Panel on Climatic Change (IPCC), have underestimated the importance of agriculture as a national and global source of atmospheric N[2]O. The coupled nature of the nitrogen and carbon cycles in soils results in complex feedbacks which complicate the formulation of strategies to reduce the global warming potential of greenhouse gas emissions from agriculture.
- Authors:
- Franzluebbers, A. J.
- Arshad, M. A.
- Source: Soil Science Society of America Journal
- Volume: 60
- Issue: 5
- Year: 1996
- Summary: Changes in soil organic matter (SOM) pools during adoption of reduced (RT) or zero tillage (ZT) can influence soil physical properties, nutrient cycling, and CO2 flux between soil and atmosphere. We determined soil organic C (SOC), soil microbial biomass C (SMBC), basal soil respiration (BSR), and mineralizable N to a depth of 200 mm at the end of 3, 5, and 6 yr after implementation of tillage management on a Falher clay (fine, montmorillonitic, frigid Typic Natriboralf) near Rycroft, Alberta, in a canola (Brassica campestris L.)-wheat (Triticum Aestivum L.)-barley (Hordeum vulgare L.)-fallow cropping system. At the end of 6 yr, SOC was not different among tillage regimes and averaged 8.6 kg m−2. At the end of 3 and 5 yr, SMBC was not significantly different among tillage regimes, but at the end of 6 yr SMBC was 7% greater in RT and 9% greater in ZT than in conventional tillage (CT). Basal soil respiration and mineralizable N at the end of 6 yr were not different among tillage regimes following barley and averaged 2.7 g CO2-C m−2 d−1 and 5.0 g inorganic N m−2 24 d−1, respectively. However, BSR following fallow was 2.2, 2.5, and 2.6 g CO2-C m−2 d−1 in CT, RT, and ZT, respectively. Mineralizable N following fallow was 5.8 g inorganic N m−2 (24 d)−1 in RT and ZT and 7.3 g inorganic N m−2 (24 d)−1 in CT. At 0 to 50 mm, there was no significant increase in SOC at the end of 6 yr, a 17 to 36% increase in SMBC, and a 12 to 69% increase in BSR with ZT compared with CT, depending on rotation phase. Relatively small changes in SOM pools with adoption of conservation tillage may be attributable to the large amount of SOM initially present and the cold, semiarid climate that limits SOM turnover.
- Authors:
- Madramootoo, C. A.
- Mehuys, G. R.
- Burgess, M. S.
- Source: Agronomy Journal
- Volume: 88
- Issue: 5
- Year: 1996
- Summary: Reduced tillage is often recommended to decrease soil degradation and erosion associated with intensive row cropping. This study assessed the effects of different tillage and crop residue levels on corn (Zea mays L.) yields and related factors on a 2.4-ha site in southwestern Quebec over a 3-yr period. The soil, a Typic Endoaquent, consisted of sandy loam or loamy sand (mean depth, 46 cm) overlying clay, with subsurface drains at the 1.2-m depth. Treatments, begun in fall 1991, consisted of no-till (NT), reduced tillage (RT; dished in fall and spring), and conventional tillage (CT; moldboard-plowed in fall, dished in spring), in combination with two crop residue levels: no residue (-R; grain and stover removed at harvest, as for silage corn) and with residue (+R; stover left on site at harvest, as for grain corn). High crop-residue mulches resulted from NT+R (77-97% of soil surface covered), RT+R (45-92%), and at times NT-R (8-35%), potentially protecting the soil from erosive forces. Seedling emergence was delayed (1992, 1993) or partly suppressed (1994) in NT+R, and was also delayed in CT+R in 1992 and 1993, and in CT-R and RT+R in 1993. Final populations were affected only in 1993. In -R (silage) plots, yields with NT and RT were either greater (1992) or the same as their CT counterparts. On +R (grain) plots, grain, stover, and total yields were lower with NT in 1992 and 1994, due in part to difficulties in planting through the residue mulch, while RT reduced grain, stover, and total yields in 1992 and stover and total yields in 1993. Thus, for silage-corn production, NT and RT may offer economically viable alternatives to CT, although the use of dishing for a RT system provides almost no protective residue cover. In continuous grain corn, high residue buildup with NT and RT requires special attention to seeding technique or yield losses may result.
- Authors:
- Source: Rangelands
- Volume: 17
- Issue: 2
- Year: 1995
- Authors:
- Source: Soil Management and Greenhouse Effect
- Year: 1995
- Authors:
- Source: Agriculture, Ecosystems & Environment
- Volume: 55
- Issue: 3
- Year: 1995
- Summary: Agricultural activities such as tillage, drainage, intercropping, rotation, grazing and extensive usage of pesticides and fertilizers have significant implications for wild species of flora and fauna. Species capable of adapting to the agricultural landscape may be limited directly by the disturbance regimes of grazing, planting and harvesting, and indirectly by the abundance of plant and insect foods available. Some management techniques, such as drainage, create such fundamental habitat changes that there are significant shifts in species composition. This paper considers the relative merits of conventional tillage versus reduced, or no-till farming, and reviews the benefits of rest-rotation grazing, crop rotation and intercropping in terms of maintaining wild species populations. There are a number of undesirable environmental impacts associated with fertilizer and pesticide usage, and in this paper we attempt to provide an account of the ways in which these inputs impact on biodiversity at various levels including plant, invertebrate, and vertebrate groups. Factors which are considered include the mobility, trophic interactions, persistence, and spectrum of toxicity for various pesticides. The ecological virtues of organic and inorganic fertilizers are compared, and the problems arising from excessive use of fertilizer are discussed. The findings in this review indicate that chemical fertilizer loadings must be better budgeted to not exceed local needs, and that pesticide inputs should be reduced to a minimum. The types and regimes of disturbance due to mechanical operations associated with agricultural activity may also be modified to help reduce negative impacts on particular groups of species, such as birds. For those plant and insect species which need to be controlled for agronomic reasons, the population decreases brought about by disturbance regimes may be desirable as a form of pest management. The prevalence of agriculture over such a large portion of the Canadian landscape means that it is important that we find solutions to conflicts that arise between agriculture and wild species. It is important to realize that the impact of agricultural inputs varies greatly among regions and species, and actual effects have generally not been investigated for many species in any one locality; while the focus of this review is on Canada, much Canadian-specific research is lacking, thus, this review also draws from relevant research done elsewhere.
- Authors:
- Rowell, A. L.
- Weinrich, K. B.
- Barnwell, T. O.
- Jackson, R. B.,IV
- Patwardhan, A. S.
- Donigian, A. S.
- Source: Soil Management and Greenhouse Effect
- Year: 1995