- Authors:
- Hoeppner, F.
- Fuss, R.
- Wolf, U.
- Flessa, H.
- Source: Nutrient Cycling in Agroecosystems
- Volume: 100
- Issue: 1
- Year: 2014
- Summary: Fertilization with biogas residues from the digestion of energy crops is of growing importance. Digestate from silage maize (Zea mays L.) is a new fertilizer with a high potential for ammonia (NH3) and nitrous oxide (N2O) emission. The aim of this study was to determine the effect of different maize fertilization systems [180 kg N ha(-1) in form of calcium nitrate (MIN), biogas digestate from maize (DIG) and biogas digestate from maize mixed with the nitrification inhibitor Piadin (DIG + NI)] on the emission of NH3 and N2O from a sandy soil and to assess the total greenhouse gas emission of these fertilization systems. The study is based on a randomized field plot experiment in central Germany and an experimental period of a full year. Annual N2O-N emission was generally low [0.21 (MIN) to 0.37 (DIG) kg N ha(-1)] without differences between treatments. The application of Piadin reduced N2O emissions by 37 and 62 % during the weeks following digestate application but the annual N2O emission was not affected by the fertilization treatment. NH3 emission was only significant for treatments fertilized with digestate. It was not affected by Piadin and accounted for 27 % (+NI) and 29 % of the applied ammonium. Total greenhouse gas emission was dominated by NH3 losses (reducing the fertilizer value and inducing indirect N2O emissions) for the treatments fertilized with maize digestate. The most important greenhouse gas emission source of the MIN treatment were emissions from fertilizer production. Our results show the high potential of digestate from maize as a new source of NH3 emission. Mitigation measures are essential to save the value of this new fertilizer type and to reduce atmospheric and environmental pollution by direct emission of NH3 and indirect emission of greenhouse gases.
- Authors:
- Freese, D.
- Medinski, T. V.
- Böhm, C.
- Source: Agroforestry Systems
- Volume: 15
- Year: 2014
- Summary: Understanding of soil carbon dynamics after establishment of alley-cropping systems is crucial for mitigation of greenhouse CO2 gas. This study investigates soil CO2 fluxes in an alley-cropping system composed of tree strips of black locust (Robinia pseudoacacia L.) and poplar (Populus nigra × P. maximowiczii,Max 1) trees and adjacent to them crop strips (Lupinus/Solarigol). Soil CO2 flux was measured monthly over a period from March to November 2012, using a LI-COR LI-8100A automated device. Concurrently with CO2 flux measurements, soil and air temperature, soil moisture, microbial C and hot water-extractable C were determined for the soils nearby soil collars. Root biomass was determined to a depth of 15 cm. In all sampling areas, soil CO2 flux increased from May to July, showing a significant positive correlation with air and soil temperature, which can be a reflection of increase in photosynthesis, and therefore supply of carbohydrates from leaves to rhizosphere, over the warm summer months. A positive correlation between CO2 flux and soil moisture over the warm period indicates an enhancing role of soil moisture on microbial mineralization and root respiration. Average CO2 flux values observed over March–November period did not differ significantly between sampling areas, showing 2.5, 3.2, and 2.9 µmol m-2 s-1 values for black locust, poplar and crops, respectively. Significantly higher CO2 flux values over the summer period in trees could be attributed to the higher photosynthetic activity and higher root density compared to crops.
- Authors:
- Muehling, K. H.
- Kage, H.
- Herrmann, A.
- Wienforth, B.
- Chen, R.
- Senbayram, M.
- Dittert, K.
- Source: BIOENERGY RESEARCH
- Volume: 7
- Issue: 4
- Year: 2014
- Summary: There is a growing concern that greenhouse gas (GHG) emissions during agricultural energy crop production might negate GHG emission savings which was not intended when promoting the use of renewable energy. Nitrous oxide (N2O) is a major GHG, and in addition, it is the most powerful ozone-depleting compound that is emitted by human activity. The use of N fertilizers and animal manures is the main anthropogenic source of N2O emissions. In spite of their high relevance, we still have limited understanding of the complex underlying microbial processes that consume or produce N2O and their interactions with soil types, fertilizers (rate and types), plants, and other environmental variables. In a 2-year field experiment, we compared two important biogas crops in two different agro-ecological regions of northern Germany for their productivity and GHG emissions, using the closed-chamber technique and high time-resolution sampling. Silage maize, which is currently the most widespread crop grown for biogas fermentation purposes in Germany, was compared with an alternative bioenergy crop at each site. The three forms of nitrogen fertilizers/manures were given: calcium ammonium nitrate, cattle/pig slurry, and biogas residue. The greatest N2O flux activity occurred in the period of May-July in all crops and at both sites. Flux patterns indicated pronounced effects of soil moisture-soil mineral-N interactions which were also seen as causation of the higher N2O fluxes in the bioenergy crop maize compared to the other tested energy crops. However, the N2O emission per unit methane production (specific N2O emission) was clearly lower in soils planted with maize due to significantly higher methane hectare yield of maize. Our data suggest a linear relationship between increasing N input and increases in N2O emission in both years at site with sandy loam texture where highest N2O fluxes were measured. At sandy loam site, the percentage of applied N being emitted as N2O was 1.9 and 1.1 % in soils cropped with maize and 0.9 and 0.8 % in soils cropped with wheat during the investigation period 2007-2008 and 2008-2009, respectively. In contrast, at site with sandy soil texture, the percentage of applied N emitted as N2O was only 0.6 and 0.7 % in maize soils and 0.4 and 0.3 % in grassland during 2007-2008 and 2008-2009 period, respectively. Higher daily and annual N2O emissions at the sandy loam site were attributed to the finer soil texture and higher denitrification activity. The present study provides a very good basis for the assessment of direct emissions of greenhouse gases from relevant biogas crops in North-West Europe.
- Authors:
- Gericke, D.
- Dittert, K.
- Senbayram, M.
- Kage, H.
- Sieling, K.
- Svoboda, N.
- Wienforth, B.
- Taube, F.
- Claus, S.
- Pacholski, A.
- Herrmann, A.
- Source: JOURNAL OF AGRICULTURAL SCIENCE
- Volume: 152
- Issue: S1
- Year: 2014
- Summary: A considerable expansion of biogas production in Germany, paralleled by a strong increase in maize acreage, has caused growing concern that greenhouse gas (GHG) emissions during crop substrate production might counteract the GHG emission saving potential. Based on a 2-year field trial, a GHG balance was conducted to evaluate the mitigation potential of regionally adapted cropping systems (continuous maize, maize-wheat-Italian ryegrass, perennial ryegrass ley), depending on nitrogen (N) level and N type. Considering the whole production chain, all cropping systems investigated contributed to the mitigation of GHG emissions (6.7-13.3 t CO2 eq/ha), with continuous maize revealing a carbon dioxide (CO2) saving potential of 55-61% compared with a fossil energy mix reference system. The current sustainability thresholds in terms of CO2 savings set by the EU Renewable Energy Directive could be met by all cropping systems (48-76%). Emissions from crop production had the largest impact on the mitigation effect (>= 50%) unless the biogas residue storage was not covered. The comparison of N fertilizer types showed less pronounced differences in GHG mitigation potential, whereas considerable site effects were observed.
- Authors:
- Peter,C.
- Fiore,A.
- Nendel,C.
- Xiloyannis,C.
- Year: 2014
- Summary: In this paper, we discuss different methods to calculate greenhouse gas field emissions from fertilization and soil carbon changes to be integrated into Carbon Footprint (CFP) of food and biomass products. At regional level, the simple Tier 1 approach proposed in the IPCC (2006a) AFOLU guidelines is often insufficient to account for emission variability which depends on soil type, climate or crop management. However, the extensive data collection required by Tier 2 and 3 approaches is usually considered too complex and time consuming to be practicable in Life Cycle Assessment. We present four case studies to compare Tier 1 with medium-effort Tier 2 and 3 methodologies. Relevant differences were found: for annual crops, a higher Tier approach seems more appropriate to calculate fertilizer-induced field emissions, while for perennial crops the impact on CFP was negligible. To calculate emissions related to soil carbon change higher Tiers are always more appropriate.
- Authors:
- Merz, K.
- Stolnikova, E.
- Wiesenberg, G. L. B.
- Hafner, S.
- Kuzyakov, Y.
- Source: Regular Article
- Volume: 380
- Issue: 1-2
- Year: 2014
- Summary: This study analyzed the extent to which root exudates diffuse from the root surface towards the soil depending on topsoil and subsoil properties and the effect of arbuscular mycorrhizal fungal hyphae on root-derived C distribution in the rhizosphere. Alfalfa was grown in three-compartment pots. Nylon gauze prevented either roots alone or roots and arbuscular mycorrhizal fungal hyphae from penetrating into the rhizosphere compartments. (CO2)-C-14 pulse labeling enabled the measurement of C-14-labeled exudates in dissolved (DOC) and total organic carbon (TOC) in the rhizosphere, distributed either by diffusion alone or by diffusion, root hair and hyphal transport. Root exudation and microbial decomposition of exudates was higher in the rhizosphere with topsoil compared to subsoil properties. Exudates extended over 28 mm (DOC) and 20 mm (TOC). Different soil properties and mycorrhization, likely caused by the low arbuscular mycorrhizal colonization of roots (13 +/- 4 % (topsoil properties) and 18 +/- 5 % (subsoil properties)), had no effect. Higher microbial decomposition compensated for higher root exudation into the rhizosphere with topsoil properties, which resulted in equal exudate extent when compared to the rhizosphere with subsoil properties. Higher C-14 activity used for labeling compared with previous studies enabled the detection of low exudate concentrations at longer distances from the root surface.
- Authors:
- Thiele-Bruhn, S.
- Ludwig, M.
- Vohland, M.
- Ludwig, B.
- Source: Geoderma
- Volume: 223
- Year: 2014
- Summary: Spectral variable selection is an important step in spectroscopic data analysis, as it tends to parsimonious data representation and can result in multivariate models with greater predictive ability. In this study, we used VIS-NIR (visible to near-infrared) diffuse reflectance and DRIFT (diffuse reflectance infrared Fourier transform in the mid-infrared range, MIR) spectroscopy to determine a series of chemical and biological soil properties. Multivariate calibrations were performed with partial least squares regression (PLSR) using the full absorbance spectra (VIS-NIR: 400-2500 nm with 5-nm intervals; MIR: 4000-800 cm(-1) with 4-cm(-1) intervals) and with a combination of PLSR and CARS (competitive adaptive reweighted sampling) to integrate only the most informative key variables. The CARS procedure has as yet not been applied in the field of soil spectroscopy. As set heterogeneity is crucial for an optimal calibration, we tested these approaches to a sample set of 60 agricultural samples covering a broad range of different parent materials, soil textures, organic matter contents and soil pH values. Soil samples were taken from the Ap horizon (0-10 cm depth), air-dried and pulverised before the lab spectroscopic measurements were performed. In a cross-validation approach, the CARS-PLSR method was markedly more accurate than full spectrum-PLSR for all investigated soil variables and both spectral regions. With MIR data and CARS-PLSR, excellent results (indicated by a residual prediction deviation (RPD) greater than 3.0) were obtained for organic carbon (OC), nitrogen (N), microbial biomass-C (C-mic) and pH values; for hot water extractable C (C-hwe), RPD was 2.60. The accuracies obtained with VIS-NIR data were considerably lower than those with the MIR spectra; best results were retrieved for pH and C-mic (approximately quantitative as indicated by RPD values between 2.0 and 2.5). The information content of the MIR data was substantially different from the VIS-NIR information, as indicated by 2D correlation analysis. We found an overall blurred 2D correlation pattern between both spectral regions with moderate to low correlation coefficients, which suggested that the heterogeneity of the studied soil sample population had led to a very complex blurring of overtones and combination bands in the NIR region. Statistical CARS selections were physically reasonable. MIR key wavenumbers for the studied C fractions were inter alia identified at the bands at 2920 cm(-1) and 2850 cm(-1) (both aliphatic CH-groups) and the region between 1740 and 1600 cm(-1) (CO-groups) and represent hydrophobic and hydrophilic compounds of soil organic matter. Important VIS-NIR wavelengths for assessing C fractions and N were located nearby the prominent water absorption band at 1915 nm and the hydroxyl band at 2200 nm. The simplicity of the approach, parsimony of the multivariate models, accuracy levels in the cross-validation and physically reasonable selections indicated a successful operation of the CARS procedure. It should be further examined with a larger number of samples using separate calibration and validation sets. (C) 2014 Elsevier B.V. All rights reserved.
- Authors:
- Siegfried, W.
- Rohr, C.
- Riemann, D.
- Retso, D.
- Pribyl, K.
- Nordl, O.
- Litzenburger, L.
- Limanowka, D.
- Labbe, T.
- Kotyza, O.
- Kiss, A.
- Himmelsbach, I.
- Glaser, R.
- Dobrovolny, P.
- Contino, A.
- Camenisch, C.
- Burmeister, K.
- Brazdil, R.
- Bieber, U.
- Barriendos, M.
- Alcoforado, M.
- Luterbacher, J.
- Gruenewald, U.
- Herget, J.
- Seneviratne, S.
- Wagner, S.
- Zorita, E.
- Werner, J.
- Pfister, C.
- Wetter, O.
- Soderberg, J.
- Spring, J.
- Source: Climatic Change
- Volume: 125
- Issue: 3-4
- Year: 2014
- Summary: The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring-summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km(2), we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.
- Authors:
- De Nocker, L.
- Aertsens, J.
- Gobin, A.
- Source: Land Use Policy
- Volume: 31
- Year: 2013
- Summary: Purpose: This paper aims at indicating the potential of agricultural measures in sequestering carbon as an option for climate change mitigation. The related value for society is estimated. Principle results: Agricultural practices like agroforestry, introducing hedges, low and no tillage and cover crops have an important potential to increase carbon sequestration. The total technical potential in the EU-27 is estimated to be 1566 million tonnes CO2-equivalent per year. This corresponds to 37% of all CO2-equivalent emissions in the EU in 2007. The introduction of agroforestry is the measure with the highest potential, i.e. 90% of the total potential of the measures studied. Taking account only of the value for climate change mitigation, the introduction of agroforestry is estimated to have a value of 282 euro/ha in 2012 that will gradually increase to 1007 euro/ha in 2030. Major conclusions: This implies that there is a huge potential which represents an important value for society in general and for the agricultural sector in specific. At the European level, only in the last few years policy makers have recognized the important benefits of agroforestry. In their rural development programmes some European countries now support farmers to introduce agroforestry. But still the current level of support is only a small fraction of the societal value of agroforestry. If this value would be fully recognized by internalizing the positive externality, we expect that agroforestry will be introduced to a very large extent in the next decades, in Europe and the rest of the world, and this will importantly change the rural landscapes. (C) 2012 Elsevier Ltd. All rights reserved.
- Authors:
- Source: Acta Horticulturae
International Society for Horticultural Science
- Issue: 998
- Year: 2013
- Summary: Thinning is a prerequisite in worldwide fruit production. The question arose as to its contribution to the carbon footprint in different production schemes. Carbon footprinting of thinning in fruit orchards is based on fossil fuel consumption, converted into greenhouse gas emission (GHG) and expressed as CO 2 equivalents, which comprises carbon dioxide (CO 2; factor 1), methane (CH 4; factor 25) and nitrous oxides (N 2O; factor 298), according to PAS 2050: Oct 2011 and PAS 2050-1 (hort). Flower thinning with ATS foliar nitrogen fertiliser emitted 25-37 kg CO 2e/ha per treatment (without associated N 2O emissions), while fruitlet thinning with 6-BA emitted ca. 13 kg CO 2e/ha, Brevis 18.5 (single application) or 34 (double application) kg CO 2e/ha and lime sulfur in organic orchards 27-42 kg CO 2e/ha. Mechanical thinning with the Bonner machine at 6 km/h at 360 rpm produced 27.9 kg CO 2e/ha emissions, while manual fruitlet thinning after June drop had a carbon footprint of only 3.1 kg CO 2e/ha, since manual labour does not utilize fossil fuel.